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Abstract
The following thesis revolves around the topic of isotope labelling experiments
in cheminformatics and the creation of an automated system to design isotope
labelling experiments in order to distinguish chemical pathways which is espe-
cially relevant is metabolic networks. The system can however be used in any
chemical or non-chemical setting that can be modelled by a generative chem-
istry framework that uses graph-grammars.

To accomplish this, an approach based on semigroup theory is presented. It
uses a series of orbit calculations to see all possible places isotope labels can
go. The thesis introduces the Pathway Tables and Pathway Comparison Tables
that give the user an overview of what isotope labellings can be useful to try
based on orbits and inverted orbits. One of the outcomes of the thesis has been
a Python framework that can be used to infer such tables automatically. The
Python framework is tested on a couple of chemical examples like Glycolysis,
where it is used distinguish the ED and EMP pathways in an automated fashion.
It has also been used to distinguish other artificially-created pathways.

This thesis also presents an alternative method to solve the problem of finding
vertex maps between educt and product graphs in a chemical network previ-
ously created using graph-grammars. It allows e.g. for the ability to optionally
ignore certain atoms such as hydrogens which cause a lot of unnecessary com-
binatorics. This new method is designed and implemented to improve the per-
formance of the semigroup approach on large chemical networks, where a large
number of vertex maps needs to be computed. It is demonstrated how this new
method can be orders of magnitude faster for certain chemical examples.

The approaches and tools developed in this thesis open up for a wide range of
other subsequent analysis approaches for instance using Petri-nets, constraint-
based membership testing or creating ordinary differential equations for simu-
lations over time.
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Resume
Det følgende speciale omhandler emnet isotope labelling experiments i kemin-
formatik og skabelsen af et automatisk system til isotope labelling experiments
for at muliggøre at kunne skelne forskellige kemisks pathways hvilket bl.a. er
relevant i metaboliske netværk. Systemet kan dog bruges i et hvert kemiske
eller ikke-kemisk scenarie, der kan modelleres af et generative chemistry frame-
work der bruger grafgrammatikker.

For at gøre dette introduceres en metode baseret på semigruppe-teori. Den
bruger en række orbit-udregninger for at danne et overblik over hvor alle mulige
isotope labels kan ende op. Specialet introducerer Pathway Tables og Path-
way Comparison Tables, der giver brugeren et overblik over hvilke isotope la-
bellings som kan være frugtbare at afprøve, baseret på orbits og inverterede
orbits. Et produkt af specialet har været et Python framework der kan skabe
førnævnte tabeller automatisk. Python frameworket er testet på et par forskel-
lige kemiske eksempler såsom Glycolysis, hvor det kan bruges til at skelne ED
og EMP pathways på automatisk vis. Frameworket bruges også til at skelne
andre kunstigt-skabte pathways.

Specialet introducerer også en alternativ metode til at løse problemet om at
finde vertex maps mellem edukt- og produkt-grafer i et kemisk netværk tidligere
skabt af grafgrammatikker. Metoden gør det bl.a. muligt at ignorere atomer så-
som hydrogener, der er skyld i en masse unødvendig kombinatorik. Denne nye
metode er designet og implementeret for at forberdre køretiden af semigruppe-
metoden på store kemiske netværk, hvor mange vertex maps skal beregnes. Det
demonstreres hvordan denne nye metode kan være størrelsesordener hurtigere
for visse kemiske eksempler.

Disse metoder og værktøjer, udviklet i dette speciale, åbner op for en bred vifte
af opfølgende analyse-metoder for eksempel ved at bruge Petri-nets, constraint-
baseret membership testing eller skabelsen af ordinære differentialligninger til
at lave simuleringer over tid.
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1
Introduction & Preliminaries

1.1 Introduction

In chemistry and biology the study of pathways is very important. In this the-
sis, we use the word pathway to refer one or more start-molecules that, via a
sequence of reactions, become one or more goal-molecules. For instance a se-
quences of reactions turn Glucose into fat molecules. Some pathways might be
active in some species and inactive in others. It would therefore be interesting
to have methods and tools to better understand such pathways. One idea is for
instance to keep track of atoms through a chemical or metabolic network.

There has been work by [15] and [24] in the field of flux balance analysis where
metabolic networks are extended to include information about how atoms are
transported through such networks. These networks are called atom transition
networks and they serve as a basis for the analysis of isotope labelling experi-
ments.

One problem is that atom transition networks are directed graphs that do not
encode the symmetries of molecules. They also often need to be created by
hand. Instead, in this thesis, the aim is to use hypergraphs to model metabolic
networks. Such hypergraphs have vertices corresponding to molecular graphs
and hyperedges corresponding to chemical reactions based on graph rewriting
rules. These hypergraphs can be created automatically and since such hyper-
graphs model molecules on an atomic level, it is natural to augment them with
information of how atoms are transported through the individual reactions and
thereby through the whole network.

Using hypergraphs, a group theoretical approach can be employed, where reac-
tions are seen as permutations based on the set of all automorphisms (symme-
tries) of all molecular graphs and the set of all possible atom-to-atom mappings
for each hyperedge in the system.

The remainder of this chapter will build the theoretical foundation that is used
throughout the thesis. First, the theory of generative chemistry using graph
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grammars is explained. This will include how molecules are modelled as graphs
and reactions are modelled as graph transformations. Next, an overview of
isotope labelling experiments is presented, and lastly, group theory and semi-
group theory is explained as it will be used extensively throughout the thesis.
An overview of the rest of the thesis can be found in the last part of this chapter.

1.2 The Molecular Model

In this thesis we will simulate many chemical reactions and molecules. There-
fore a suitable molecular model and simulation program is needed. The work
of this thesis will use and build on top of MedØlDatschgerl (MØD, mod) devel-
oped by Jakok Lykke Andersen and others.
Explaining all of MØD and the theory behind it is out of the scope of this thesis,
but can be found here [2] [3] [4] [5] [6]. However in order for this thesis to be
self-contained, all the theory needed is given here.

MØD operates in the realm of generative chemistry which is the study of building
complex and interesting chemical systems starting from a small set of molecules
and applying rules to produce new molecules. Rules might for instance be well-
known chemical reactions. MØD is essentially a graph rewriting machine that
finds rule patterns in existing molecules and modify them according to the rules
to get new molecules.

We define molecules:

Definition 1. In this model, a molecule is a simple connected graph G = (V, E).

• Vertices of V are annotated with

– Atom, e.g. H, C, O etc.

– Charge, e.g. −, + or no charge.

• Edges of E are annotated with

– Bond type, e.g. single bond (−), double bond (=) or aromatic bond.

See Figure 1.1 for an example.

Important: The graph corresponding to the molecule is not labelled in the sense
that each vertex has a unique, distinguishing identifier. However, all graphs
need to be stored somehow and in MØD each vertex will be assigned a unique
but arbitrary internal id. These ids can be printed when printing molecules in
MØD and will be seen throughout this thesis. They are useful for pointing at
specific atoms in a molecule, but can change for every run of MØD.

Informally, reactions are transformations on molecule-graphs. This can generally
be any desired transformation, but in a chemical setting this is typically the
addition and removal of edges (bonds).



Chapter 1. Introduction & Preliminaries 3

Modelling and Analysis of Chemical Systems
1. Model molecules as labelled graphs.

I An old idea: [J. J. Sylvester, Chemistry and Algebra, Nature 1878]
I Molecule: simple, connected, labelled graph.
I Vertex labels: atom type, charge.
I Edge labels: bond type.
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FIGURE 1.1: How a molecule is represented as a graph in
this model.

To understand the formalism of how reactions are modelled in MØD, one first
needs to know about morphisms and Double-Pushouts.

1.2.1 Morphisms & Double-Pushout

Throughout this thesis, function, mapping, map and morphism will be used al-
most synonymously. They are all functions that take some input and return
some output, however depending on the context different words will be used.
For instance, when talking about Double-Pushouts and the graph isomorphism
problem, the word morphism will be used, since this is rooted in category theory.
It describes a function that preserves some structure.

Morphisms come in a couple of variants, including monomorphism and isomor-
phism. And while one could consider them in a general category theory setting,
we will consider the setting of graphs, since this is what they will be used for
in this thesis. Specifically, when applied to molecule-graphs, morphisms can be
used to model graph transformations.

Definition 2. Let G = (VG, EG) and H = (VH, EH) be graphs.
A graph morphism m : G → H maps vertices and edges from G to H while pre-
serving the structure in the following way:

If e = (u, v) ∈ EG, then m(e) = (m(u), m(v)) ∈ EH.

In other words: If there is an edge between two mapped vertices in G, it must
also be there in H.

This definition and the rest of the section is a brief version of [6].

• m is a monomorphism if m is injective, i.e. two vertices of G cannot map to
the same thing in H.

• m is a subgraph isomorphism if m is a monomorphism and

(u, v) ∈ EG ⇔ (m(u), m(v)) ∈ EH.
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In other words, we do not only require that an edge in G is preserved in
H, but also that if there is no edge between two mapped vertices in G, then
there should also be no edge between the corresponding vertices in H.

• m is an isomorphism if m is a subgraph isomorphism and m is a bijection of
the vertices, meaning that |VG| = |VH|.
When an isomorphism between G and H exists, we say that they are iso-
morphic and write G ∼= H.

• m is an automorphism if m is an isomorphism from G to itself. The differ-
ence between isomorphism and automorphism is mostly semantics, for
instance whether we know that G and H are the same graph beforehand.

Automorphisms are used to describe symmetries of graphs, for instance if
vertices can be mapped onto themselves in a way that describes rotation
or mirroring of the graph.

G H

(a) A morphism.

G H

(b) A monomorphism.
G H

(c) A subgraph isomorphism.

G H

(d) An isomorphism.

Figure 1: Examples of the graph morphisms from Def. 2.1, visualised as explicit vertex mappings
in red. (a) a morphism which is not a monomorphism, (b) a monomorphism which is not a
subgraph isomorphism, (c) a subgraph isomorphism which is not an isomorphism, and (d) an
isomorphism.

trivially be extended to graphs with vertex and edge labels. LetG = (VG, EG) andH = (VH , EH)
be two graphs.

Definition 2.1 (Graph Morphisms). A graph (homo)morphism m : G → H is a structure-
preserving mapping of vertices and edges. That is, if e = (u, v) ∈ EG thenm(e) = (m(u),m(v)) ∈
EH . Furthermore (see also Fig. 1)

• m is a monomorphism if it is injective: ∀u, v ∈ VG, u 6= v ⇒ m(u) 6= m(v). When a
monomorphism exists we may simply write it as G ⊆ H or in the reverse order H ⊇ G.

• m is a subgraph isomorphism if m is a monomorphism and (u, v) ∈ EG ⇔ (m(u),m(v)) ∈
EH .

• m is an isomorphism if it is a subgraph isomorphism, and is a bijection of the vertices.
When an isomorphism exists we say G and H are isomorphic and write it as G ∼= H.

Morphisms form the basis of categories. Here we only state the definitions and aim at an
intuitive understanding of the constructions in categories of graphs. For the full details we refer
to [24, Appendix A].

Definition 2.2 (Category, see [24, Definition A.1]). A category C consists of

• a class of objects Ob(C),

• a class of morphisms Mor(C) where each morphism f : A → B maps A ∈ Ob(C) to
B ∈ Ob(C), and

• a morphism composition operator ◦ : Mor(C)×Mor(C)→Mor(C)

such that

• the class of morphisms is closed under composition: for each pair of morphism f : A→ B,
g : B → C there is a morphism g ◦ f : A→ B,

• there is an identity morphism idA : A→ A for each object A ∈ Ob(C), and

FIGURE 1.2: The different morphisms visualized.

See Figure 1.2 for an example of the different types of morphisms. How these
morphisms are found given two graphs will be discussed in a later section.
It is possible to compose morphisms and this operation is associative.

Notation 1. The composition of morphisms f and g is written f ◦ g. In this
thesis, it is left-to-right, meaning that f ◦ g is read as "first f then g" or mathe-
matically g( f (x)) for some x.

Another concept from category theory is the pushout.

Definition 3. Let A, B, C and D be graphs and suppose we have two mor-
phisms, mAB : A→ B and mAC : A→ C.

The morphisms mCD : C → D and mBD : B → D form a pushout of mAB and
mAC, if and only if

(i) mAB ◦mBD = mAC ◦mCD.
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In other words, if some vertex is mapped from A to B to D (via mAB and
mBD), it should give the same vertex as if mapped from A to C to D (via
mAC and mCD).

A B

C D

mAB

mAC mBD

mCD

(ii) For all pairs of morphisms mBX : B → X and mCX : C → X that map to
some new graph X, where it holds that mAB ◦ mBX = mAC ◦ mCX, there
must exist a unique morphism mDX : D → X such that mBX = mBD ◦mDX
and mCX = mCD ◦mDX.

A B

C D

X

mAB

mAC mBD

mCD

mBX

mCX

mDX

The use of pushouts will become apparent later. For now, it is just important
to emphasize that if given A, B and C from the diagram in Definition 3, it is
possible to determine D. Generally, given any three of the four, it is possible to
determine the last one.

A Double-Pushout (DPO) is the conjunction of two pushout diagrams, one to
the left and one to the right, as depicted in Figure 1.3.

E A B

F C D

FIGURE 1.3
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1.2.2 Reactions & Rule Application

The goal is to model chemical reactions (or any graph transformation) using
morphisms and DPOs. Suppose for instance we want to describe the reac-
tion pattern of Figure 1.4. It describes that among all the currently produced
molecules, one molecule must contain a pattern of C=COH and another must
contain a pattern of C=O (together they are the pattern L). If these patterns are
found, edges are removed and added to turn them into one molecule with the
pattern R.

Graph Transformation Rules
Vertices and edges are either deleted, preserved, or added.

C

O

O

C

C

H

L

C

O

O

C

C

H

R

As a Double Pushout (DPO) rule p = (L l←− K r−→ R):
C

O

O

C

C

H

L

C

O

O

C

C

H

K

C

O

O

C

C

H

R

l r

Semantics
I L\K is deleted.
I K is preserved.
I R\K is added.
I Both l and r are monomorphisms.

http://mod.imada.sdu.dk 13/46

FIGURE 1.4: A desired graph transformation.

Graph Transformation Rules
Vertices and edges are either deleted, preserved, or added.
As a Double Pushout (DPO) rule p = (L l←− K r−→ R):

C

O

O

C

C

H

L

C

O

O

C

C

H

K

C

O

O

C

C

H

R

l r

Semantics
I L\K is deleted.
I K is preserved.
I R\K is added.
I Both l and r are monomorphisms.

http://mod.imada.sdu.dk 13/46

FIGURE 1.5: The corresponding rule in DPO formalism.

The rules of MØD will be written in Double Pushout (DPO) formalism with
the format p = (L l←− K r−→ R). K is the context that does not change during the
transformation. L is the left graph that transforms into R through K. Let G be a
union graph formed by a multiset of molecules. All connected components in
G are individual molecules. A rule is applied to G by finding a monomorphism
from L to G (a "pattern match"), then using the morphisms l and r to remove
L \ K from G and adding R \ K in its place, resulting in a transformed graph
called H.

We can write the rule from Figure 1.4 in the DPO formalism as depicted in Fig-
ure 1.5.

We can now describe the mechanism used by MØD to apply rules, based on the
Figure 1.6 and depicted with a chemical example in Figure 1.7.

1. Given a union graph G of a multiset of molecules and a rule p = (L l←− K r−→ R).

2. Find L in G, i.e. find a monomorphism m.

3. Determine D based on L, K and G.
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4. Determine H based on K, R and D.

5. We now have the modified graph H.

We call this a direct derivation from G to H via rule p and morphism m, written
G

p,m
=⇒ H or G

p
=⇒ H if the morphism is unimportant.

L K R

G D H

l r

m m′

l′ r′

d

FIGURE 1.6

0.3 Derivation 6, 2 {Formaldehyde, p0,0} -> {p0,1}
|{ e in outEdges(1) | label(target(e)) in { ’O’ } }| = 1
|{ e in outEdges(5) | label(target(e)) in { ’O’ } }| = 1

0.3.1 Match

C

C

O

H

O

C

L

C

C

O

H

O

C

K

C

C

O

H

O

C

R

C

O

HH

O

C

C

O

H

H

H

H

G

C

O

HH

O

C

C

O

H

H

H

H

D

C

O

HH

O

C

C

O

H

H

H

H

H

Files: out/012_r_303_10101000_-120_0_{derL,derK,derR}
Files: out/014_r_308_10101000_-120_0_{derG,derD,derH}

0.4 Derivation 8, 2 {Glycolaldehyde, p0,0} -> {p0,2}
|{ e in outEdges(1) | label(target(e)) in { ’O’ } }| = 1
|{ e in outEdges(5) | label(target(e)) in { ’O’ } }| = 1

Page 3 af 4

FIGURE 1.7: A chemical example of a DPO diagram being used to
apply a rule.

1.2.3 Derivation Graph

A powerful concept is the Derivation Graph (DG) which represents the chemical
space of all possible molecules that can be produced by various rule applications.
The DG will be a central part of our atom tracing analysis.

A DG is a hypergraph H = (V, E) consisting of vertices V and hyperedges
E. Vertices are just like ordinary graph vertices and in the case of the DG each
vertex contains a molecule-graph. A hyperedge e = (e+, e−) is a multiset of tail-
vertices e+ to a multiset of head-vertices e−. In the case of the DG, hyperedges
correspond to rule applications which in turn correspond to chemical reactions.

The DG is computed by starting with an initial set of molecules and then apply-
ing rules following some strategy, for instance apply all rules repeatedly, until
no new molecules are produced.
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When a rule needs to be applied, we consider it as function of multiple ar-
guments where each argument corresponds to a connected component in the
left-hand side graph of the rule. So if there are k connected components in the
left-hand side, the function will have k arguments. Similar to partial function
application, we can then imagine that a rule can be partially applied to a graph,
resulting in a new rule, with fewer connected components in its left-hand graph.
A DPO derivation can therefore be calculated by iterated binding of graphs to
the rule until all arguments have been bound. See Figure 1.8 for an example.

C

O H

H

(a) Formaldehyde

C

C

O

H

O

C

L

C

C

O

H

O

C

K

C

C

O

H

O

C

R

(b) Aldol addition

C

C

O

H

L

C

C

O

H

K

C

O

H

H
C

C

O

H

R

(c) Aldol addition with formaldehyde bound

Figure 8: An example of partial application of a graph transformation rule. Formaldehyde
(a) can be bound to one of the components of the left-hand graph of aldol addition (b). The
resulting rule (c) represents the addition of formaldehyde to an enol.

the resulting rule have the form (∅ ← ∅ → H). Such a rule is essentially equivalent to a constant
function, implying that a DPO derivation can be calculated by iterated graph binding.

A more general concept than partial application is function composition. Consider two DPO
rules p1 = (L1 ← K1 → R1) and p2 = (L2 ← K2 → R2) and suppose we have a monomorphism
from L2 to R1. Then if we first have a derivation G1

p1=⇒ G2, then we for sure can find a match
of L2 in G2 and potentially a derivation G2

p2=⇒ G3. If we can define a composition p2 ◦ p1 the
two derivations can be combined into G1

p2◦p1===⇒ G3.
The concept of rule composition is in the area of graph transformation related to both D-

concurrency [22] and E-concurrency [24, 29]. In this section we first describe the most general
form of composition, similar to D-concurrency, and then several special cases with relevance
to the modelling of chemistry. Secondly we describe how enumeration of compositions can be
implemented in practice.

3.1 Classes of Composition

In general, the composition of two rules pi = (Li
li←− Ki

ri−→ Ri) for i = 1, 2, depends on a
common subgraph of R1 and L2. Formally (see also [22, Section 6.2]) we say that p1 and p2

are composed using a graph D with morphisms d1 : D → R1, and d2 : D → L2, and write
p = p1 •D p2 as shorthand for the composed rule, if it exists. Note that the order of the operands
is the reverse compared to the usual composition operator ◦. The composed rule p corresponds
to first applying p1 and then p2. The composed rule exists if and only if the diagram in Fig. 9
exists with the squares (1), (2), (2’), (3), (3’) all being pushouts, and (4) being a pullback. We
then have p = p1 •D p2 = (L l←− K

r−→ R) with l = s1 ◦ w1 and r = t2 ◦ w2 as the resulting
composition. Algorithmically we can describe the construction of p as follows:

1. Construct E as the pushout object of (1).

FIGURE 1.8: A rule with 2 connected components (b). Formalde-
hyde (a) is applied to one of the connected components resulting

in a new rule with 1 connected component (c).

Here is the algorithm for expanding the chemical space of the system based on
initial molecules, rules and a strategy:

1. Start with a initial set of molecules, S, and a set of rules P.

2. According to some strategy, pick a rule p = (L l←− K r−→ R) to be applied.
Let k be the number of connected components in L.

3. For each of the k connected components in L, look for a subgraph in all
currently known molecules S to find an occurrence. The subgraph match
is found via a monomorphism.

4. When all k connected components have been bound, transform the af-
fected molecules based on the rule to get new molecules.

5. For each produced molecule, check if it is already present in S, for in-
stance by checking if it is isomorphic to any molecules in S. If not, add the
molecule to S.

6. This is repeated until no new molecules are created, or if the strategy spec-
ifies otherwise.
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To create the actual DG, each initial molecule will have a vertex in the hy-
pergraph. When a rule is applied, a hyperedge is drawn from all affected
molecules of the left-hand side to all created molecules of the right-hand side.
If a new molecule does not have a vertex in the hypergraph yet, it is created.
If a molecule already has a corresponding vertex, it is reused, so each molecule
only occurs once in the DG. See an example of a DG in Figure 1.9.

FIGURE 1.9: An example of a DG based on the Formose reaction,
created based on two initial molecules, Formaldehyde and Gly-
colaldehyde, and two rules, Keto-Enol and Aldol (not presented

here).

1.2.4 Rule Composition

There are many classes of rule composition used in the theory behind MØD,
however relevant for this thesis is the full composition. Let p1 = (L1 ← K1 → R1)
and p2 = (L2 ← K2 → R2) be rules. The full composition is applicable when
L2 is a subgraph of R1 found via a monomorphism. The full composition p1 •⊇
p2 = (L← K → R) of p1 and p2 is given by applying p1 to go from L1 to R1 and
then p2 is applied to the subgraph of R1 matching L2. The final result is a rule
from L to R, where L ∼= L1 and R is R1 with p2 applied to it. See Figure 1.10.
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Symmetrically, we define p1 •⊆ p2 where R1 is found as a subgraph in L2 via a
monomorphism.

Both •⊇ and •⊆ can refer to an arbitrary full composition or the enumeration of
all such compositions depending on the context.

L1 R1 L2 R2
p1 p2

L ∼= L1 R R2
p

(a) Abstract depiction

D

L1 K1 R1 L2 K2 R2

L C1 E C2 R

K

(1)

(2) (2’)(3) (3’)

(4)

d1

e2 v2 u2

w1 w2l r

d2

u1 v1 e1

l1

s1

r1

t1

l2

s2

r2

t2

(b) Specialisation of the composition diagram

CH3
C

CH2

CH
CH2

CH

CH
C
H2

CH2

CH2
C
H2

p1

CH3
C

CH2

CH
CH2

CH

CH
C
H2

CH2

CH2
C
H2

C
C

C
C

C

C p2

C
C

C
C

C

C

CH3
C

CH2

CH
CH2

CH

CH
C
H2

CH2

CH2
C
H2

p

CH3
C

C
H2

CH
C
H2

CH

CH
C
H2

CH2

CH2
C
H2

(c) Chemical example

Figure 11: Full composition p = p1 •⊇ p2 where D is a copy of L2 and d2 is an isomorphism. (a)
Abstract depiction; L2 is isomorphic to a subgraph of R1. (b) Specialised commutative diagram
for full composition, where double-lines represent isomorphisms. As d2 is an isomorphism so
will e1, v1 and u1 be. (c) Chemical example; p1 = (G← G→ G) is the identity rule for a graph
G encoding the educts cyclohexene and isoprene. The second rule, p2, is the transformation
rule for the Diels-Alder reaction. The composed rule therefore encodes the overall rule of the
Diels-Alder reaction on the input molecules. The context graphs and D are omitted from the
drawings for simplicity, though the embedding of the common graph D in R1 and L2 is indicated
by the red dashed lines.

FIGURE 1.10: Abstract depiction of full rule composition p1 •⊇ p2.

1.2.5 Vertex Maps

When the DG has been built, one can ask MØD for the set of vertex maps for a
given hyperedge, e, written VertexMaps(e). A vertex map is one concrete map-
ping from the vertices of G to the vertices of H. Specifically, each internal id of
the vertices of G will be mapped to an internal id of the vertices of H.

Note that this mapping is not an isomorphism since the subgraph affected by
the rule can change edges (and possibly vertices in a non-chemical example).
The part of the graph outside the subgraph is, however, isomorphic.

The set of all vertex maps returned by MØD is not only all possible mappings
from G to H, but it also encodes all automophisms of G and of H. In other
words, if G has some symmetries, each of them will contribute with a vertex
map. The same goes for H.

For instance, suppose that G has a vertex with an internal id of 1 that is mapped
to a vertex in H with internal id 7. Suppose further that G has a mirror symme-
try such that internal id 1 becomes internal id 5. This will contribute with two
vertex maps to the set of vertex maps. One where 1 is mapped 7 and one where
5 is mapped to 7.

The use of vertex maps is crucial for the approach taken in this thesis to distin-
guish pathways. Combined with semigroup theory it forms the basis of Chap-
ter 2. Due to the importance of vertex maps, being able to compute all relevent
vertex maps efficiently will be the topic of Chapter 3.

1.2.6 The (Sub)graph Isomorphism Problem & VF2

As described in section 1.2 it is important for the DPO approach, and there-
fore MØD, to be able to relatively efficiently find different types of morphisms
between two graphs, G and H, in particular monomorphisms and (sub)graph
isomorphisms.

The subgraph isomorphism problem as a decision problem can be expressed
formally as: Given graphs G = (VG, EG) and H = (VH, EH), is there a subgraph
H′ = (VH′ , EH′) of H where G ∼= H′, i.e. is there a bijection f : VG → VH′ such
that (u, v) ∈ EG ⇔ ( f (u), f (v)) ∈ EH′?



Chapter 1. Introduction & Preliminaries 11

It is known that the subgraph isomorphism problem is NP-complete [19]. The
graph isomorphism problem is a special case of the subgraph isomorphism
problem where |VG| = |VH|, and recent work still being peer-reviewed suggests
that this problem is sub-exponential [7].

For graphs with vertices of bounded degree – like molecules in a chemical set-
ting – the (sub)graph isomorphism problem can be solved polynomial time [17].

The graph matching algorithm used by MØD to solve graph monomorphism,
subgraph isomorphism and graph isomorphism problems is the VF2 algorithm.
It is based on a search tree approach that explores a search space, in a similar
fashion to the search tree of Ullmann’s algorithm [21]. In contrast to Ullmann’s
algorithm, VF2 maintains a partial mapping that is extended during the execu-
tion of the algorthm. VF2 also uses some clever heuristics to prune unprofitable
paths. An example of a tree search is shown in Figure 1.11.

The pseudo code for VF2 can be seen below. Specifically, it describes its depth-
first search of the state space. The pseudo code does not detail the inner work-
ings of VF2 – it is out of the scope of this thesis. For instance, checking if
S + (n, m) is feasible uses some look-ahead techniques. Depending on how
the feasibility is checked, VF2 can be used to find monomorphisms, subgraph
isomorphisms and graph isomorphisms. Another thing that is not detailed is
the Candidate Pairs Set P(S) ⊆ VG ×VH of all pairs of vertices that needs to be
tested for feasibility. These things are detailed in [10].

The version of VF2 in the pseudo code (which represents more precisely how
it is implemented in MØD) takes a CALLBACK-function that is called with any
newly found mapping. This callback can be used to store all morphisms found
in a list or handle them however the user wants. The callback returns a boolean;
true if VF2 should continue searching for matches, false otherwise. This lets the
user control how many morphisms should be enumerated. This becomes very
relevant for the approach described in Chapter 3.

The VF2 algorithm has a best case time complexity of Θ(n2) and a worst case
time complexity of Θ(n!n) [10], and it runs fast in practice especially on bouded-
degree graphs like molecules.
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a b c d

G

1

2 35

4

H

✖

✖

 a ↦ 1      a ↦ 4 

 b ↦ 2   

 c ↦ 3 
 c ↦ 5 

   b ↦ 5 

   c ↦ 2 

 d ↦ 1  d ↦ 3 

FIGURE 1.11: An example of a tree search (not necessarily VF2) for
subgraph isomorphism. Nodes are states in a search tree. Assign-
ing a to 1, b to 2 and c to 3 to c seems promising until a dead-end is
reached (gray) and backtracking is done. Trying c to 5 would not
be feasible (cross) because of the edge from 1 to 5, but no edge from
a to c. Backtracking all the way to the top and trying to assign a to
4 finally yields a valid match (green) after some more searching.

function VF2MATCH(G, H, S, CALLBACK)
// S is a stack of tuples, each representing a match
// from a vertex of G to a vertex of H.
if S covers all nodes of G then

// Give the match to CALLBACK
// and let it decide if the algorithm should keep searching.
return CALLBACK(S)

else
for (n, m) ∈ P(S) do

if S + (n, m) is feasible then
// Recurse
continueSearch← VF2MATCH(G, H, S + (n, m), CALLBACK)
if not continueSearch then

// Backtrack without trying more possibilities.
return False

// No more vertices to try. Backtrack and keep searching.
return True

function VF2(G, H, CALLBACK)
VF2MATCH(G, H, ∅, CALLBACK)
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1.3 Isotopic Labelling Experiments

As mentioned in the introduction, the study of pathways is very important in
chemistry and biology, and we would like to develop tools to distinguish dif-
ferent pathways.

One tool that is useful in this regard is to buy start-molecules with a specific
isotope labelling. Atoms consist of protons and neutrons, and the number of
protons determine the chemical element, for instance carbon contains 6 protons.
The most commonly found carbon atoms contain 6 neutrons, with a total weight
of 12. Isotopes are atoms with the same number of protons, but different number
of neutrons. Some noticeable examples of carbon isotopes are carbon-12 (the
most commonly found isotope of carbon), carbon-13 and carbon-14 (famously
used for carbon dating). See Figure 1.12. Some isotopes are unstable, meaning
that they decay into other elements, and some are stable. In this thesis, we will
only work with stable isotopes or isotopes that decay so slowly that one can
carry out an isotope labelling experiment before the atoms decay.

FIGURE 1.12: Three isotopes of carbon. Source: LibreTexts.

Importantly, isotopes have the same chemical properties, but different weights,
meaning that tools such as the mass spectrometer can be used to distinguish
isotopes based on weight. In practice, different isotopes can have slightly dif-
ferent chemical and physical properties in some cases [22], but we will ignore
this in this thesis.

We say that a molecule is isotope labelled or simply labelled if it has one or more
atoms that are isotopes different from the norm. Recall from the previous sec-
tion that we represent molecules as unlabelled graphs. In this regard, one
should not confuse a labelled molecule with a labelled graph. The former is
the ability to distinguish some atoms from each other, the latter is the ability to
distinguish all vertices uniquely from each other.

In particular, it is possible to distinguish two of the same molecules if they have
labels in different positions, when ignoring symmetries. It is also important to
point out that such labelled molecules are distinguished using a mass spectrom-
eter and while it is possible based on the position of each label, it is much easier
to simply distinguish by weight, since the total number of neutrons of some

https://chem.libretexts.org/LibreTexts/University_of_Kentucky/UK%3A_CHE_103_-_Chemistry_for_Allied_Health_(Soult)/Chapters/Chapter_2%3A_Elements_and_Ions/2.1%3A_Isotopes_and_Atomic_Mass
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molecule will be higher or lower depending on the number and type of labels.
See Figure 1.13.

(A) (B)

(C) (D)

Carbon-13 Carbon-14

FIGURE 1.13: A Benzene-ring with different labellings. (A) is in-
distinguishable from (B) due to mirror or rotational symmetry. (A)
is distinguishable from (C), but not by weight. (A) is also distin-

guishable from (D) by weight due to the carbon-14.

The idea behind isotope labelling experiments is to buy or produce isotope
labelled start-molecules, for instance Glucose with a carbon-13 isotope in the
place of a carbon-12 in a specific position of the molecule. Then these com-
pounds are run through some experiment, for instance the Glucose is ingested
or by other means transformed into the goal-molecules. By extracting the goal-
molecules and analyzing where in the goal-molecules the isotopes ended up, it
would be possible to learn something about the chemical process involved. For
instance, if it is known that one of two pathways will be active in some species,
and the goal-molecule reveals a large number of isotope labels in a certain po-
sition, it might be possible to conclude which of the two pathways was indeed
active.
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There are a couple of challenges involved with this process:

• The cost of compounds with isotope labels is orders of magnitude higher
than their normal counterparts.

• It is also possible to buy compounds (possibly cheaper) with a mix of dif-
ferent isotope labellings, i.e. there is a distribution of various labellings.
For instance, it might be possible to buy a solution where 75% of the
molecules in the solution have a carbon-13 at some position and 25% of
the molecules have the carbon-13 in another position.

In this thesis, it will however be assumed for simplicity that all labelled
start-molecules have the same exact labellings.

• Some labellings might give meaningful information about the pathways
while some others might not. The process of buying different labelled
start-molecules and trying different labelled goal-molecules in a mass spec-
trometer is time consuming and costly.

• Given a specific labelling, knowing where the isotopes could end up in
the goal-molecules is only half the puzzle. Drawing conclusions on what
pathway or pathsways are used based on that information is still challeng-
ing.

Having an automated computer system to simulate these possibilities and give
an analysis could help to save time and money.
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1.4 Groups and Semigroups

Some of the results of this thesis rely on some (semi)group theory, thus we will
very briefly recap the basics. It is based on [12] and [16].

1.4.1 Group Basics

Definition 4. A group is a set G together with a operation •. The operation takes
two elements of G and returns an element of G.

The group must satisfy the following requirements:

Closure
If g, h ∈ G, then g • h must be in G.

Associativity
For all g, h, k ∈ G, it must hold that (g • h) • k = g • (h • k).

Identity
There must exists an element e ∈ G such that for all g ∈ G it holds that

e • g = g = g • e

This element is also sometimes written as 1.

Inverse
For all g ∈ G, there must exists an element g−1 ∈ G such that

g−1 • g = e = g • g−1

Example 1. Let G = {0, 1, 2, 3} and • is addition modulo 4, i.e. (_ + _) mod 4.

We check a couple of the properties with examples:

Identity
From normal addition, we know that 0 is the identity element that does
not change anything when added with other elements. We try with 2.

(0 + 2) mod 4 = 2 mod 4 = 2
(2 + 0) mod 4 = 2 mod 4 = 2

Inverse
From normal addition, we know that −x is the inverse of x. But negative
numbers are not part of the G. Luckily, there exists a corresponding posi-
tive number that serve as the inverse. Here is an example with 1 and −1:

(1 + (−1)) mod 4 = (1 + 3) mod 4 = 4 mod 4 = 0
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Closure
We try a couple of different pairs of elements of G to see if they are closed.

(1 + 1) mod 4 = 2 mod 4 = 2 ∈ G
(2 + 3) mod 4 = 5 mod 4 = 1 ∈ G

The mod makes elements "wrap around" so it is always the case.

Definition 5. The order of a group G, denoted |G|, is the number of elements of
G.

Example 2. Let G = {0, 1, 2, 3} and • is addition modulo 4. The order of G is
4 since |G| = 4.

Often we do not store nor specify all elements of the group explicitly.

Definition 6. A generating set S is a subset of G such that every element of G
can be expressed as combination of elements of S and their inverses. We write
G = 〈S〉. If S = {s1, s2, . . . , sk}, it is also common to write G = 〈s1, s2, . . . , sk〉.

Example 3. Let G = {0, 1, 2, 3} and • is addition modulo 4. G can also be
expressed as 〈1〉 since

(1 + 1) mod 4 = 2 mod 4 = 2
(2 + 1) mod 4 = 3 mod 4 = 3
(3 + 1) mod 4 = 4 mod 4 = 0

Thus we were able to generate the entire set. Note that for instance 〈2〉 6= G
since

(2 + 2) mod 4 = 4 mod 4 = 0
(0 + 2) mod 4 = 2 mod 4 = 2

A quite central topic in group theory is the study of subgroups:

Definition 7. H is a subgroup of G, written as H ≤ G, if H is a subset of G and
H forms a group under the same operation.
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Example 4. Let G and 〈2〉 be given from Example 3. 〈2〉 is a subgroup of G. It is
a subset of G and it is a group on its own. Closure is shown in the Example 3.

What follows is a couple of interesting lemmas and theorems about groups.
Proofs are left out as it is outside the scope of this thesis.

Theorem 1 (Lagrange’s Theorem). Let H be a subgroup of G. |H| divides |G|.

Example 5. Consider again Example 3. We have | 〈2〉 | = 2 and |G| = 4, and
indeed 2 divides 4.

Definition 8. Let H be a subgroup of G. A (right) coset of H w.r.t. g ∈ G is given
by

Hg = {h • g | h ∈ H}

Note that cosets are not necessarily subgroups.

Example 6. Consider again Example 3. Let H = 〈2〉 = {0, 2} and

H1 = {(0 + 1) mod 4, (2 + 1) mod 4} = {1, 3}

H1 is not a group, since (1 + 3) mod 4 = 0 6∈ H1. H and H1 cover the entirety
of G and partition G into equal-sized, non-overlapping sets.

1.4.2 Permutation Groups

Permutation groups are groups where the elements are permutations and the
operation is function composition.

The usual notation is that we have a group G of permutations that act on a set
of points Ω. The set of points can be anything, but we usually normalize it to be
Ω = {1, 2, . . . , n}.
A permutation in this context is a bijective function σ that given a point from Ω
maps it to a point of Ω. One standard notation for a permutation is the two-line
notation:

σ =

(
1 2 3 · · · n
3 4 1 · · · 42

)
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The above is read as "1 goes to 3, 2 goes to 4," and so on. Another more compact
notation is the cyclic notation:

σ = (13)(245) · · ·

It is read as "1 goes to 3, 3 goes to 1. 2 goes to 4," and so on. Any elements left
out are mapped to themselves. This notation will be preferred in this thesis.

Notation 2. Let ω ∈ Ω and g ∈ G. g acting on ω is written as g(ω).

Definition 9. The orbit of a point ω ∈ Ω is all the points that can be reached via
group actions. We write it as

OrbitG(ω) = {g(ω) | g ∈ G} ⊆ Ω

Example 7. Let Ω = {1, 2, 3, 4, 5} and let

G =

〈
(1 2)(3 4)︸ ︷︷ ︸

g1

, (2 5)︸ ︷︷ ︸
g2

〉

Suppose we want to find the orbit of 1.
All elements of G can be explicitly stated

G = { (), (1 2)(3 4), (2 5), (3 4), (2 5)(3 4), (1 2), (1 2 5),
(1 2 5)(3 4), (1 5 2), (1 5 2)(3 4), (1 5), (1 5)(3 4)}

Now one can go through each element and see where 1 is mapped for each. It
turns out that the orbit of 1 is

OrbitG(1) = {1, 2, 5}

It is also possible find orbits of tuples and sets:

Definition 10. Let t = (ω1, . . . , ωk) be a tuple of size k of points from Ω.

OrbitG(t) = {(g(ω1), . . . , g(ωk)) | g ∈ G}
The orbit of sets is defined similarly with {g(ω1), . . . , g(ωk)}, or equivalently
by considering the elements of each tuple to be sorted.

There are some more advanced group theory ideas that will be presented. They
have not been used in this thesis, but could be useful for potential future work.
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Definition 11. The stabilizer of a point ω ∈ Ω is all group elements that do not
move ω. We write it as

StabG(ω) = {g | g ∈ G, g(ω) = ω} ≤ G

While stabilizers and stabilizer chains are not used in this thesis, they are already
used by MØD to do graph canonicalization and might have many more uses.

Lemma 1. Let G be a group that acts on Ω and let ω ∈ Ω. Then

|OrbitG(ω)| · |StabG(ω)| = |G|

Lemma 2 (Schreier’s Lemma). Let H be a subgroup of G = 〈S〉. Let R be a set of
representatives of the cosets of H. Finally, for g ∈ G, denote g the representative
of the coset Hg. Then H is generated by

{rs(rs)−1 | r ∈ R, s ∈ S}

There is also an algorithm called the Schreier-Sims Algorithm that uses Schreier’s
Lemma and many of other ideas from group theory to preprocess the group in
polynomial time such that membership testing (determining if an object is an
element of a group) can be done efficiently.

1.4.3 Transformations & Semigroups

We will use group theory to model reactions and the chaining of reactions. More
on this in Chapter 2. It turns out that a reaction resembles a permutation except
for one fact: Some reactions do not (or are very unlikely to) go backwards, i.e.
they lack an inverse. Therefore reactions will not be represented by permuta-
tions, but by transformations.

Definition 12. A transformation t is a function that maps a set Ω to itself, i.e.
t : Ω→ Ω.

When Ω = {1, . . . , n} for some n, the following notation is convenient:

Notation 3. A transformation t can be written as a list of length n where the
value of the i’th position corresponds to t(i).
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Example 8.

1 7→ 2
2 7→ 1
3 7→ 3

can be written as
[2, 1, 3]

The index of a position in the list can be specified with a number above:

[. . . ,
4
2, . . . ]

The goal is to create a "group of transformations" where the elements of the
group are transformations instead of permutations. But since elements of groups
are required to have inverses, this is not well-defined. Luckily, such groups
without inverses exists under the name semigroups:

Definition 13. A semigroup is a set G together with a operation •. The operation
takes two elements of G and returns an element of G.

The semigroup must satisfy the following requirements:

Closure
If g, h ∈ G, then g • h must be in G.

Associativity
For all g, h, k ∈ G, it must hold that (g • h) • k = g • (h • k).

Note that there is no guarantee for an element to have an inverse, and there is
no guarantee of the existence of an identity element.

It is now well-defined to think about a semigroup of transformations where the
elements are transformations and the operation is function composition.

While some properties of groups do not hold for semigroups, others do. For
instance, the notion of orbit is exactly the same.
Many problems involving semigroups of a finite set of generators are hard. It
can be shown that determining any "sensible" property of such semigroups is
undecidable and that membership testing in commutative transformation semi-
groups is NP-complete. [11] This is however in a general case and in practice,
especially with the semigroups we will work with in this thesis, some things
like orbits can be computed quite efficiently.
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1.5 Overview of Chapters

Chapter 2 introduces an approach for atom tracing called the Hypergraph-Semigroup
approach. It uses semigroup theory, specifically orbits, to automatically infer ta-
bles that can be used for the design of isotope labelling experiments.

Chapter 3 shows how computing vertex maps – an essential part of the Hypergraph-
Semigroup approach – can be made more efficient by using a direct approach
instead of rule composition. It takes advantage of the fact that hydrogens can
be ignored in many chemical examples to reduce combinatorics.

Chapter 4 gives some concluding remarks, and it presents potential future work
as well as some alternative approaches with some initial thoughts and remarks.
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2
The Hypergraph-Semigroup

Approach

2.1 Introduction

The overarching goal is to be able to distinguish different pathways supplied
by the user. To do this, we will use semigroup theory to analyze each pathway
and present the results as tables that can assist the scientists when they carry
out isotope labelling experiments in laboratory.

The first step is to construct a Hypergraph-Semigroup from a DG. This semi-
group can be used to compute orbits. And based on orbits, it is possible to cre-
ate a Pathway Table where rows are pathways, columns are possible candidates
for atom labelling and the entries are orbit calculations. This table can be sim-
plified and can be used to make educated decisions on what isotope labelling
experiments to carry out in real-life to distinguish pathways.

If this is not enough, one can create Pathway Comparison Tables that compares
two pathways directly to give more fine-grained details.

This approach is discrete and deterministic, thus it will not give probabilities
of the various pathways, but rather clear signs when pathways are unambigu-
ously distinguishable.

All of the theory in this chapter has resulted in a Python framework which
is presented at the end of the chapter. It can be used in conjunction with the
Python interface for MØD (PyMØD) to aid the design of isotope labelling ex-
periments.

2.2 Construction

The idea is this: Consider some DG consisting of multiple molecules and reac-
tions. Each molecule itself consists of multiple atoms. Suppose we collect all
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atoms together and give them ids them from 1 to n, where n is the total number
of atoms in the system.

We call set of all atom ids Ω = {1, 2, . . . , n}. The semigroup G we construct will
act on these points and keep in mind that these points correspond to atoms of
the DG.

The elements of G will be transformations corresponding to the reactions of
the DG. For instance, if an atom 3 from one molecule maps to 7 from another
molecule, then part of the transformation will be

3 7→ 7

We are now ready to define this formally:

Definition 14. An atomic linearization of a DG is a list [1, 2, . . . , n] of ids corre-
sponding to the atoms of molecules one after another. n is the total number of
atoms in the system.

Note: The linearization ids are in the range of 1 to n instead of 0 to n− 1, since
they will be used in a semigroup where the tradition is to use the range 1 to n.

In the rest of the section, we will assume that we, for a given DG, always have
access to some atomic linearization, Ω. These will be the points that our semi-
group will act on.

Important: Every atom in the DG now has two ids: The internal id of the molecule
where the atom resides and a linearization id just introduced. As mentioned in
the Preliminaries, the internal id are the ids that will be printed by MØD and are
therefore useful for referring to individual atoms. The internal ids are, however,
not unique across molecules since all internal ids are in the range {0, . . . , m− 1},
where m is the size of some molecule. Linearization ids are arbitrarily assigned,
but unique across the entire DG, which is needed to create a semigroup of trans-
formations.
The type of ids is usually clear from the context, however sometimes it will be
specified explicitly.

Next, we create the semigroup based on the reactions of the DG:

Definition 15. The Hypergraph-Semigroup of a derivation graph H = (V, E) is a
semigroup G = 〈S〉 acting on Ω, where

S =
⋃
e∈E

VertexMaps(e)

In other words, every possible vertex map among all reactions become a gener-
ator of the semigroup. See Figure 2.1 for an example of a DG and vertex map.
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FIGURE 2.1: Part of the Formose reaction. A linearization of the
carbons is found. One transformation of VertexMaps(r3) is shown.

This is done for all reactions.

2.3 Orbits

Since we now have a semigroup, we can rely on all the semigroup theory that
we know. One tool that will prove useful is the notion of orbit as discussed in
the Preliminaries.

Given a Hypergraph-Semigroup G and a single atom a in a start-molecule, we
can start by asking the following question: What does OrbitG(a) represent?
Since the orbit represents all points that some initial point can go to, OrbitG(a)
represents all the atoms in the DG that a can go to. See Figure 2.2.
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FIGURE 2.2: Glycolysis, ED pathway. Two different orbits. La-
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It does not encode time or multiplicities of molecules. Keep in mind that there is
no guarantee that any molecule with any combinations of labellings is observed
in real-life experiments just because the orbit would suggest it.

The orbit is simply a map of what-could-happen, and in the case of very sym-
metric molecules, for instance the ones in the Formose reaction from Figure 2.1,
the orbit would cover most or all the atoms in the DG. Thus, at a glance this
approach would not seem very insightful, but utilized in the right way, this ap-
proach is very simple to carry out and at the same time very powerful. It is just
important to be aware of what orbits can and cannot do.

Suppose for instance that some carbon with linearization id 1 in the start-molecule
has the orbit of {8, 11, 12} in the goal-molecule. If a carbon is labelled at id 1 and
a goal-molecule is ever observed in real-life with a label at id 13, then we can
conclude that the model is wrong – the DG does not model all pathways or has
some flaw – otherwise the orbit would have included 13. We can generalize this
to a hypothesis:

Hypothesis 1. Let G be a Hypergraph-Semigroup of some DG and let a single
atom k be labelled. Suppose a molecule with a label at id i is observed in the
laboratory. If i 6∈ OrbitG(k), then the DG does not correctly describe the events
happening in the laboratory.

We phrase it as a hypothesis, similar to the Church-Turing hypothesis, because
it lies on the boundary of theory and reality, and it cannot be proven. One might
for instance observe labels that should not be possible due to other chemical or
physical factors beyond the model.

In a sense, the Hypergraph-Semigroup includes all possibilities, more than re-
ality, but we also know that we can exclude everything that the Hypergraph-
Semigroup does not include.

Orbits of pairs and sets

Another important thing is the fact that orbits can be computed for tuples and
sets. Computing the orbit of (a, b) – where a and b are atoms of start-molecule –
represents where a and b can go "in sync". If we imagine the orbit computation
as each a and b jumping from one atom to another following the atom tracing,
then we would see them jump in lock-step. While this is a very good way to
intuitively understand orbits of pairs, it can be deceiving at times. Consider
Figure 2.3.

Here we have a pair corresponding to two circles connected with a line. Follow-
ing the hyperedges Glucose→ p0,0 → p0,1 → p0,2 → p0,3, we see that the labels
move together from molecule to molecule. Then p0,3 splits into a Pyruvate and
G3P and the labels get separated. One of them gets to its spot at id 5 in the Pyru-
vate and stays there, while the other goes around from p0,4 to p0,9 and ends up at
id 1 in the Pyruvate (in real-life, this is of course a different Pyruvate-molecule,
but using orbits does not reveal this).
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One could think that since the first label to reach the Pyruvate has nowhere to
go, the second would never reach the Pyruvate because one would expect labels
to always "jump" to new molecules. This is however not the case.

This is because when computing the transformations for the reaction G3P →
p0,4, the vertex maps of the hyperedge are turned into transformations. The
transformations describe how atoms of G3P are mapped to p0,4 while the rest of
the atoms are unchanged. Thus the label at id 5 in the Pyruvate will simply be
mapped to itself.

When the orbit of a set {a, b} is computed it is very similar to the orbit of (a, b),
but order of a point does not matter. So {a, b} → {c, d} is the same as {a, b} →
{d, c}. The result is an orbit set that is either the same as with tuples (which is
the case of Figure 2.3) or smaller, because some points end up being equivalent.
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2.4 Inverted Orbits

Another key insight is that we can compute inverted orbits which we can intu-
itively understand as computing orbits from the goal-molecules backwards to
the start-molecules.

Suppose we go back Figure 2.1 and let Glycolaldehyde be the start-molecule
and p0,6 be the goal-molecule for the sake of the example. Suppose further that
an isotope labelling experiment is run with linearization id 13 labelled and p0,6
is observed with a label at linearization id 0, 2 and 3. Without even thinking
about pathways, it would be desirable to be able to tell if the model is correct –
should it even be possible to observe this labelling of (0, 2, 3)?

Using the inverted Hypergraph-Semigroup, we can answer in case it is not.

Definition 16. Let G = 〈T〉 be a Hypergraph-Semigroup.
The inverted Hypergraph-Semigroup G−1 of G is a semigroup G−1 = 〈X〉 where

X = {t−1 | t ∈ T}

Each t is a vertex map converted into a transformation.

Intuitively, we can think of the inverted Hypergraph-Semigroup as all genera-
tors (transformations) being inverted. Inverting a transformation t means that
for each x 7→ t(x), t−1 would have t(x) 7→ x. For this to be well-defined, t must
be injective. Luckily, all vertex maps are bijective in a chemical setting.
The inverted orbit of x with respect to some Hypergraph-Semigroup G is there-
fore OrbitG−1(x).

We return to the question of whether it should be possible to observe a labelling
of (0, 2, 3) starting from the label 13. This can now be phrased as the question:
Is (13, 13, 13) in OrbitG−1((0, 2, 3))? This is depicted in Figure 2.4.
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(0,2,3)

(13,13,13)
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Start
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FIGURE 2.4: Compute the orbit backwards for (0, 2, 3) to see if it
could have originated from (13, 13, 13).

If (13, 13, 13) is not in the orbit, there is no way someone running the experiment
should be able to observe it. If they do, it must be an error in the model. If
(13, 13, 13) is in the orbit, there is no guarantee that it would be observed, it is
just a possibility.

We can formulate this as a hypothesis:

Hypothesis 2. Let G be a Hypergraph-Semigroup of some DG and let a single
atom k be labelled. Suppose the labelling (i1, . . . , in) is observed in the lab-
oratory. If (k, . . . , k) 6∈ OrbitG−1((i1, . . . , in)), then the DG does not correctly
describe the events happening in the laboratory.
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It is possible to define a general hypothesis for multiple labellings, but labelling
only one is usually sufficient and all we need in the remainder of the chapter.

Hypothesis 2 is the key insight that we can use to distinguish pathways. If some
atoms have a similar orbit in two different pathways, using the inverted orbit
can sometimes disambiguate the two.

2.5 Pathway Table

Suppose we have a set of pathways, P. Each pathway starts with molecule S
and ends with molecule T. Let SV be the set of atoms in S. We also have a set
of atoms A ⊆ SV that are candidates for isotope labelling. Consider creating
the following P × A table, where each entry (p, a) ∈ P × A is the subset of
OrbitGp(a) that reaches the goal-molecule T, for each Hypergraph-Semigroup
Gp of a pathway p ∈ P.

Such a table could look like this:

Pathway \ Atom label 1, C 2, C 3, C
1 0, 2 1 0, 2
2 0, 1, 2

DG 0, 2 1 0, 1, 2

The columns are the internal ids (not linearization ids) of A, namely the carbon
atoms of S. The atom type is also shown to ease the reading of the table. The
rows are the two pathways of P as well as a union of all pathways called DG. In
each entry we see a comma-separated list of internal ids (not linearization ids)
that correspond to the T-orbit of the specific column, in other words, the part of
the orbit that reaches the goal-molecule T. The reason that the internal ids are
used is because it matches the ids shown in the images created by MØD making
it much more useful for the user.

We will use the following notation to easier relate the ids to where they are
coming from: iS means the carbon with internal id i in start-molecule S. For
example: 1S corresponds to the carbon with internal id 1 in S, i.e. the column
from the table above called "1, C". We use a similar notation for iT for ids in
goal-molecule T.

Remember: The goal is to be able to carry out one or more isotope labelling
experiments and then be able to distinguish the different pathways of P. Using a
mass spectrometer, one can detect isotope labels based on weight or position. It
is much easier to detect whether some molecule has zero or two labels (weight)
compared to determining where the labels are in the molecule (position). In
particular, it is easy to determine if there are no labels versus if there are some
labels. Therefore it is preferred to look for weight-distinguishing factors over
positions. In the table above, we see such an example. If someone carries out an
isotope labelling experiment where carbon 1S of S is labelled and any labels at
all are observed in T then they know that pathway 2 cannot have been active.
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We can also introduce another small feature that is sometimes useful: Consider
the orbit of a single labelled atom xS in S. The orbit represents everywhere xS
potentially could go in the DG. Suppose the DG has dead-ends, i.e. vertices
with no outgoing edges; also called sinks. If the orbit of xS includes atoms of
such a dead-end molecule this could mean that in real-life the isotope labellings
could leave the system and never go to the goal-molecule(s). Therefore, if the
orbit of xS does not include atoms of any dead-end molecules, it gets marked
with a star which should give an indication that no matter where the labels go,
they stay in the system.

In the Python framework, it is also possible to add custom dead-ends, for in-
stance if helper molecules in reality are dead-ends, but it is not evident from the
DG.

A table with stars could look like the following:

Pathway \ Atom label 1, C 2, C 3, C
1 0, 2 1 (*) 0, 2 (*)
2 0, 1, 2 (*)

DG 0, 2 1 0, 1, 2 (*)

This table would tell us that labelling 2S in pathway 1 would guarantee that we
would observe 1T since we know

• The label could end up at 1T or leave the system based on the orbit.

• The label cannot leave the system based on the star.

In contrast, labelling 1S in pathway 1 would result in a molecule T with a label
at either 0T or 2T, or both 0T and 2T, or neither.

Now consider the following table and suppose we want design isotope labelling
experiments to determine what pathway is active.

Pathway \ Atom label 0, C 1, C 2, C
1 0, 1, 3, 4 2 1, 3
2 0, 1, 2, 4 3 2, 4
3 1, 2, 3, 4 0 1, 2, 3, 4
4 0, 1, 2, 3, 4

DG 0, 1, 2, 3, 4 0, 2, 3 0, 1, 2, 3, 4

Firstly, trying a with the label 1S, we know that if any labels at all are observed,
it would exclude pathway 4. Furthermore, if that observation includes some-
thing different than 2T, it excludes pathway 1; different from 3T, it excludes
pathway 2; and different from 0T, it excludes pathway 3. There are however
still a lot of possibilities not handled yet.

Consider labelling 0S. Each entry has a lot of ids in common with the rest of
the entries, but it can still be used. For instance, observing 3T would exclude
pathway 2. Another idea is to consider inverted orbits. Consider a pair of points
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that pathway 1 and 3 have in common, for instance (1T, 3T). Now compute the
inverted orbit for this pair in both pathway 1 and 3:

OrbitG−1
p1
((1T, 3T)) = {. . . , (0S, 2S), (2S, 0S)}

OrbitG−1
p3
((1T, 3T)) = {. . . , (0S, 2S), (2S, 2S), (0S, 0S), (2S, 0S)}

The ". . . " represents the part of the orbit not in molecule S; it is not relevant
for the analysis. We know that we started with a label only at 0S, thus both
elements of the tuple (1T, 3T) must have originated from 0S. The only of the
two pathways where this could have happened is pathway 3 because of the
(0S, 0S). Therefore, if we ever observe (1T, 3T), we can exclude pathway 1.

This idea of looking at differences in inverted orbits can be used to create a
Pathway Comparison Table that is a more powerful tool when ordinary orbits
do not give useful results.

2.6 Simplifying the Pathway Table

Before the idea of considering Pathway Comparison Tables, it is worth point-
ing out that Pathway Tables can become big, especially horizontally due to the
number of atoms in the start-molecule one wants to find the orbit of. To take
the first steps towards reducing the size of the table some simple simplification
rules are used.

Recall from section 1.3 that different labelled molecules are distinguishable based
on the position of the labels using a mass spectrometer, but it is bit challenging.
Labelled molecules are also distinguishable simply based on the weight of the
molecules which will differ based on the number of labels.

The first rule is to remove columns that are not informative. In this sense a
column can either be position-non-informative or weight-non-informative.

A column is position-non-informative if all its entries are identical. In a sense,
this means that the atom corresponding to the column does not tell us anything
useful, since it will behave the same in all pathways. See Table 2.1.

A column is weight-non-informative if all its entries have the same size, mean-
ing that there is a possibility for the goal-molecules to have the same weight no
matter the labelling. The idea behind this is to allow simplifying the Pathway
Table such that it would only be necessary to perform simple weight measure-
ments in contrast to finding the exact positions of the labels.
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Pathway \ Atom label . . . i, C . . .
1 . . . 1, 2, 3 . . .
2 . . . 1, 2, 3 . . .
3 . . . 1, 2, 3 . . .
... . . . . . . . . .

DG . . . 1, 2, 3 . . .

TABLE 2.1: A Pathway Table with an all-equal column that could
be removed.

2.7 Pathway Comparison Table

As discussed in Section 2.5, using inverted orbits can also be used to exclude
certain pathways. In this section we will introduce a table that shows all these
cases where if a certain tuple of labels is observed, it can exclude one of two
pathways.

Given a set of pathways, P, a specific column (atom) a from a Pathway Table
T, and an integer k, we create a P × P table where the rows and columns are
pathways.

For each entry (pi, pj), the algorithm to compute the entry is as follows:

• Initialize entry (pi, pj) to be an empty list.

• Let Oi = T[pi, a] and Oj = T[pj, a].

Oi is the subset of OrbitGpi
(a) that reaches the goal-molecule(s). Similarly

for Oj.

• Let O = Oi ∩Oj. We only care about what they have in common, i.e. the
part that we cannot distinguish by position.

• Let [O]k be the set of all subsets of O of size k.

• For each t ∈ [O]k (seen as a tuple):

– Compute di = OrbitG−1
pi
(t).

– Compute dj = OrbitG−1
pj
(t).

– If di contains (a, . . . , a︸ ︷︷ ︸
k

) and dj does not, add t to (pi, pj).

This is essentially the same as what was done in Section 2.5, but in an exhaustive
manner. Using this algorithm on the table at the end of Section 2.5, a = 0S and
k = 2, we get the following table:
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Contains \ Not contains 1 2 3 4 DG
1
2
3 (1, 3) (2, 4)
4 (1, 3) (2, 4)

DG (1, 3) (2, 4)

As we already discovered by hand in Section 2.5, observing a pair (1, 3) actually
let us distinguish pathway 1 from pathway 3. Likewise, we can now also see
that (1, 3) would also distinguish pathway 1 and 4.

Trying different values of a and k can give more insight about what isotope
labelling experiments to perform to distinguish different pathway. And there
is still a lot to explore about Pathway Tables and Pathway Comparison Tables.
Finally, it is still an open problem to design an algorithm that uses the Pathway
Table and different Pathway Comparison Tables to give a full isotope labelling
experiment plan that always gives the best way to carry out experiments to
distinguish pathways in all cases.

Despite this, it is still possible in many cases to use these tables to learn interest-
ing properties of the pathways and create sufficiently good plans by inspecting
the tables manually.

2.8 Examples & Results

TCA

The TriCarboxylic Acid (TCA) cycle is a series of reactions that are very im-
portant in the study of metabolism, since it describes how stored energy is re-
leased as ATP in all aerobic organisms. [1] The cycle starts with a compound
known as Acetyl Coenzyme A (AcCoA) that can be created from a Pyruvate –
the end product of the Glycolysis pathway which will be discussed later – as
well Oxaloacetic Acid (OAA). The AcCoA and OAA become Citric Acid (Cit)
and through a series of reactions a new OAA is obtained, completing the cy-
cle. There is also a "shortcut" called the Glyoxylate cycle that is sometimes in-
cluded. [8] The TCA cycle (without Glyoxylate) with carbon traces can be seen
in Figure 2.5 along with relevant molecules and ids.

Following the different carbons around from Cit to Cit can help understand
what is happening in the cycle. Consider the carbon with id 0 in Cit. After
one round from Cit to Cit, 0 will end up at 5. 5 will end back up at 0. Due
to a symmetry 0 ↔ 6 in Cit, 0 could also end up in 6. With another round, 6
becomes 1. 1 in turn becomes 13 and due to a symmetry in Succ, 1 can also end
up at 7. Thus, as it turns out, we have just computed the orbit of carbon 0 in Cit
by hand, and it showed that it could end up in all possible carbon-positions of
Cit.

Using the framework developed, we can see that this is in fact the case. We use
the framework to construct the Pathway Table seen in Table 2.2. Note that there
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is only one pathway and the table has been split into two to better fit on the
page. One interesting point is 1, 7 and 13 cannot go everywhere, but only to a
subset of the carbons. Considering Figure 2.5 again shows in fact that this is the
case since 1 can become 7 and 13, but both 7 and 13 leave the system via a CO2.

Pathway \ Atom label 0, C 1, C 5, C
TCA 0, 1, 5, 6, 7, 13 1, 7, 13 0, 1, 5, 6, 7, 13

Pathway \ Atom label 6, C 7, C 13, C
TCA 0, 1, 5, 6, 7, 13 1, 7, 13 1, 7, 13

TABLE 2.2: Cit→ Cit. The table is split in two to fit on the page.

We can also compute orbits from AcCoA to Cit. The AcCoA molecule is asym-
metric, so seeing the different orbits might give helpful insight. Labelling car-
bon 0 in AcCoA becomes id 6 in Cit which can end up everywhere in Cit as
we have previously seen. Labelling 1 in AcCoA becomes 7 in Cit which can
only end up at 1, 7 and 13. Using the framework to compute the Pathway Table
confirms this observation. This is depicted in Table 2.3.

Pathway \ Atom label 0, C 1, C
TCA 0, 1, 5, 6, 7, 13 1, 7, 13

TABLE 2.3: AcCoA→ Cit.
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FIGURE 2.5: The TCA cycle with carbon traces shown (hand-
made). Blue lines are symmetries of molecules. Orange lines are
the TCA lead-in with Pyruvate. The figure also contains close-ups

of molecules with relevant ids.
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Glycolysis

Glycolysis is a metabolic pathway that converts one Glucose molecule into two
Pyruvates. As a matter of fact there are two pathways that achieve this: The Ent-
ner–Doudoroff (ED) and the Embden–Meyerhoff–Parnass (EMP) pathways [14].
Using a MØD-model of Glycolysis and the framework developed for this the-
sis, it is possible to determine what carbons in the Glucose to label in order to
distinguish the ED and EMP pathways.

First, we consider the DG of both pathways together. This is depicted in Fig-
ure 2.6. Some atoms have a unique "route" in each of the pathways. Addition-
ally, there are no symmetric molecules, so the orbit of these atoms with a unique
route only contain atoms of different molecules. There are no atoms in the or-
bit that have the same molecule, giving this impression of a unique route for
each atom. One does in fact not need to draw these conclusions by hand, as the
Pathway Table will reveal this information automatically since the atoms with
a unique path will have an entry with only one id as well as a star.

Table 2.4 depicts the simplified Pathway Table of the two pathways as well as
the combined DG. It turns out that there are quite a few atoms, especially oxy-
gens, in the glucose that can be used to distinguish the pathways. For instance,
if an isotope labelling experiment is carried out where with a carbon-13 in the
place of the carbon at position 6 in the Glucose-molecule, and the mass spec-
trometer shows only Pyruvates with the carbon-13 at positions different from
2, then we can conclude that it is not the EMP pathway, and since there are no
other pathways, it must be the ED pathway.

OH
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〈3〉

OH
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〈6〉

OH
〈7〉

〈9〉
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CH3

〈5〉

FIGURE 2.7: Close-up of the glucose and pyruvate molecules
where the internal ids can be seen.

Pathway \ Atom label 0, O 6, C 7, O 12, C 13, O 15, O
EMP 2 3 5 0

ED 0 5 0 2 3 4
Both 0 2, 5 0, 3 2, 5 0, 3 0, 4

TABLE 2.4
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Start

GoalED

EMP

FIGURE 2.6: A combined DG for the ED and EMP pathways.

XY-2-Pathways

Next, we have a non-chemical example that tries to create two pathways that
are easily distinguishable using this approach without involving a lot of com-
plexity. In the following we will use SMILES strings.

Start-molecules: CCCY and X.
Goal-molecules: CCCX.
See Figure 2.8 for the internal ids that will be used throughout.

Y 〈0〉

C 〈1〉〈2〉

C 〈3〉 C 〈0〉

〈1〉C
〈2〉

X 〈3〉

FIGURE 2.8: The start- and goal-molecule of the pathways.

Pathways:

(A) Split into CCC and Y, then merge CCC and X into CCCX.

(B) Split into C and CCY. Attach C to X, then C to CX and then C to CCX.
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The pathways are depicted in a combined view in Figure 2.9.

Here we have three choices: Label carbon 1, 2 or 3, where carbon 1 is the carbon
closest to the Y.

1. Consider labelling carbon 1.

(A) In pathway A, 1 would become 0 in molecule CCC. But since this
molecule is symmetric, we cannot distinguish whether it is 0 or 2.
When the X is attached, the label can therefore be at either 0 or 2.

(B) In pathway B, 1 would be part of the CCY that is left dangling, thus
it would not make it to the goal-molecule.

2. Consider labelling carbon 2.

(A) In pathway A, 2 would become 1 in molecule CCC and this would
carry over to CCCX.

(B) In pathway B, 2 also would be part of the CCY that is left dangling,
thus it would also not make it to the goal-molecule.

3. Consider labelling carbon 3.

(A) In pathway A, 3 would become 3 in molecule CCC, but again it is
symmetric and the label can therefore either be 0 or 2 which carries
over to CCCX.

(B) In pathway B, 3 becomes the lone C. Three of these are then attached
to an X one at a time, resulting in CCCX where all three carbons have
a label.

Doing this analysis by hand has revealed which carbons would be helpful to
label: Labelling any of them would give us different results. If we want to
distinguish by weight, we could for instance label carbon 1. Now if we consider
the Pathway Table generated by the framework, we see that it reveals exactly
the information we obtained by hand.

Pathway \ Atom label 1, C 2, C 3, C
1 0, 2 (*) 1 (*) 0, 2 (*)
2 0, 1, 2 (*)

DG 0, 2 1 0, 1, 2 (*)

Based solely on the table, we could design the following isotope labelling plan:
Label 2 and if the final CCCX has any label, we can exclude pathway 2, thus
it must be pathway 1. And in the case no label is observed in CCCX, we can
exclude pathway 1, since it has a star so eventually some label must go to carbon
1 in CCCX.
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FIGURE 2.9: The combined DG for the two pathways (A) and (B)

XY-4-Pathways

This is a variant of XY-2-Pathways in an attempt to introduce more pathways
while still maintaining simple, distinct pathways.
Start-molecules: CCCY and X.
Goal-molecules: CCCCCX.

Pathways:

(A) CCCY splits into CCC, Y or C, CCY. The 2 C and CCC turn into CCCCC
which then attaches an X to give CCCCCX.

(B) CCCY again splits into CCC, Y or C, CCY. CCC merge with X into CCCX.
Afterwards, the single C attaches to make CCCCX and then another to
make CCCCCX.

(C) The usual split into CCC, Y or C, CCY. X is attached to a single C, then the
result is attach to another C and another until we have CCCX. CCCX is
now attached to CCC to give the too long CCCCCCX. Finally, a single C is
cut of the end, leaving CCCCCX.

(D) Here we simply split CCCY into C, CCY. X is attached to C to give CX.
Another single C is attached to CX to give CCX. This is continued all the
way to CCCCCX.

The DGs for each pathways as well as the combined DG are too big to be mean-
ingfully printed here. They can be found in Appendix A. The manual analysis
carried out in the previous example is also out of scope, but we can still consider
the simplified Pathway Table computed by the framework:



Chapter 2. The Hypergraph-Semigroup Approach 43

C 〈0〉

C 〈1〉C
〈2〉

Y 〈3〉 C 〈0〉

C 〈1〉

C
〈2〉

C
〈3〉

C
〈4〉

X
〈5〉

FIGURE 2.10: The start- and goal-molecule of the pathways in XY-
4-Pathways.

Pathway \ Atom label 0, C 1, C 2, C
1 0, 1, 3, 4 (*) 2 1, 3
2 0, 1, 2, 4 (*) 3 2, 4
3 1, 2, 3, 4 (*) 0 1, 2, 3, 4
4 0, 1, 2, 3, 4 (*)

DG 0, 1, 2, 3, 4 (*) 0, 2, 3 0, 1, 2, 3, 4

A variant of this table has already been discussed in Section 2.5. As discussed,
we can give the start of an isotope labelling plan: Label 1 in CCCY; if any labels
show up in CCCCCX, we can exclude pathway 4; if something different from
2 shows up, we can exclude pathway 1 and so. If for instance 3 is observed in
CCCCCX, we can exclude everything except pathway 2.

As also discussed, it can be difficult to distinguish if only looking at carbon 0 in
CCCY, thus one can use the Pathway Comparison Table approach to see what
observed labels can be used to distinguish. This is discussed in Section 2.7. A
Pathway Comparison Table with atom 0 and k = 2 can be seen below:

Contains \ Not contains 1 2 3 4 DG
1
2
3 (1, 3) (2, 4)
4 (1, 3) (2, 4)

DG (1, 3) (2, 4)

If ever both carbon 1 and 3 are observed with a label in CCCCCX, this would
distinguish pathway 1 from 3 and pathway 1 from 4. If ever both carbon 2 and
4 are observed with a label in CCCCCX, we can distinguish pathway 2 from
3 and 2 from 4.
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2.9 Code Overview

2.9.1 Framework

The atom tracing framework handed in with the this thesis is a Python module
called atomtracing with the following folder structure:

• grouptheory

– transformation.py

– semigroup.py

– hypergraphsemigroup.py

• pathway

– pathway.py

– pathwaytable.py

– pathwaytabulate.py

• util

transformation contains a class Transformation that represents a semigroup
transformation. It is primarily a wrapper around a dictionary with a method to
inverse.

semigroup contains a class Semigroup that represents a semigroup G of trans-
formations. The class contains a list of generators and two methods:

• invert returns the inverse semigroup by inverting each generator

• orbit which given an α computes the orbit of that point, i.e. {g(α)|g ∈ G}.
The implementation is based on the group orbit function from the Sympy
module and allows for multiple actions, for instance as tuples or as sets.
This method is the cornerstone of this entire framework.

hypergraphsemigroup contains a class HypergraphSemigroup that represents a
Hypergraph-Semigroup and another class Linearization that represents an
atomic linearization.
HypergraphSemigroup contains many different minor things, but the main points
are:

• hypergraph: The hypergraph for which the Hypergraph-Semigroup is com-
puted.

• linearization: An instance of Linearization. Each atom in the hyper-
graph gets a unique id and mapping back and forth between id and atom
is easy.

• generators: A list of generators computed as described in the theory sec-
tion above. In short: Go through each hyperedge, find all vertex maps and
turn them into Transformations.
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• semigroup and inverted_semigroup: The underlying Semigroup based on
the generators and its inverted counterpart.

• The method orbitwhich is a wrapper around the semigroup orbitmethod
where instead of giving an α, then an atom (or tuple of atoms) is given in-
stead. It is first converted to an α using the linearization, then the orbit is
found and the orbit is converted back to atoms using the linearization.

pathway contains a class Pathway that represents a pathway: A set of start-
molecules, a set of goal-molecules and an underlying hypergraph containing
all start- and goal-molecules. This class has an undelying HypergraphSemigroup
that is build based on the hypergraph.
Pathway contains a couple of helper functions:

• orbit: A wrapper around the HypergraphSemigroup orbit method. With-
out any flags given, it will by default only return the part of the orbit that
is in the goal_molecules.

• orbit_backwards: Like orbit, but will use the underlying inverted Hypergraph-
Semigroup and by default only return the part of the orbit reaching the
start_molecules.

• all_pairs_orbit_backwards: A helper function that takes an orbit of the
goal-molecules, i.e. the result of orbit. It will then try all pairs and for
each it computes the inverted orbit to start_molecules and determines if
all elements of the tuple coincide in one single atom, a. The method will
return a dictionary that maps from each pair to a list of such a’s. The size
k can be specified via the optional parameter tuple_size. The default is 2.

The class also has two static methods from_example and from_flow_solution
that are useful when creating Pathways from an example and a flow solution re-
spectively. Examples come from an example database which is explained later.

Finally, the pathway file contains some free-floating functions:

• examples_to_pathways: it takes a list of examples and returns a list of
Pathways. It creates the DG from each example and uses this to create the
corresponding pathway. One key feature of this function is that the graph
database used for each DG will be the same, so molecules that are isomor-
phic between DGs will also be guaranteed to have the same internal ids
which are used for the labelling of input molecules and output of the var-
ious tables. These ids are also the ones that will be shown in the summary
file.

• example_flow_to_pathways: This is mostly a helper that can be used in
most examples when many flow solutions are needed. It takes one exam-
ple, create a DG and then a flow where each start-molecule is a source and
each goal-molecule is a sink. Additionally, each goal-molecule must have
an outflow of 1. And vertices with in-degree 0 are marked as sources, as
well as vertices with out-degree 0 are marked as targets. By default at
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most 5 flow solutions are found, but this can be changed via the optional
parameter maxNumberSolutions.

The pathwaytable file contains a class PathwayTable that represents a Pathway
Table and a class PathwayTableSimplified that is a PathwayTable where reduc-
tion rules have been applied to simplify it. The PathwayTable class takes a list of
pathways and a list of atoms from the start-molecules and creates a table where
the rows are pathways and the columns are atoms. Each entry (p, a) uses the
orbit method of p to find the orbit of a that reaches the goal-molecules.
The class has the following methods:

• __getitem__ gives the []-operator, like table[p,a] to get the entry (p, a).
There are also a lot of other methods used to access different aspects of the
table, for instance rows and columns.

• simplify returns a PathwayTableSimplified.

• pathway_comparison_table return a Pathway Comparison Table.

• tabulates returns a list of PathwayTabulate, one for each start- and goal-
molecule-pair.

• to_summary writes the hypergraph of each pathway to the summary file
as well as writes each tabulates to the summary.

The pathwaytabulate file contains the PathwayTabulate class that represents a
cross-section of the PathwayTable that focuses only on one start-molecule and
one goal-molecule of possibly many. This is primarily for printing purposes to
make it more intuitive and less cluttered. When we only have a single start-
molecule to worry about, the labels of the column can be referred to by a single
number, namely the internal id, which is what is also shown in the DG in the
summary file. Similarly, each entry in the tabulate can be a list of internal ids of
where that atom from the start-molecule can go in the goal-molecule.
This class uses the pip package tabulate to display content with either beautiful
ascii-symbols or directly as LATEX.

Finally, the util folder contains a mix of different utilities and helper functions.
Some highlights are:

• FilteredHypergraph, inspired by Boost filtered_graph, creates a view of
a subhypergraph based on a hypergraph. It takes two predicates: one for
vertices and one for hyperedges. If the predicate returns true, the hyper-
vertex/edge is included, otherwise not.

The FilteredHypergraph is used to create the DGFlowSubgraph class that
given a DG and a flow solution yields a sub-DG, including only the ver-
tices and edges that have a non-zero flow.

This is useful because it simplifies the atom tracing procedure to think
about hypergraphs, start-molecules and goal-molecules. It does not mat-
ter if the hypergraphs are different DGs or the subgraphs of the same DG
based on different flow solutions.
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This DGFlowSubgraph is automatically created when using helper func-
tions like example_flow_to_pathways.

• is_carbon, is_hydrogen, is_not_hydrogen and other functions from atomselector
helps to filter out only the atoms that the user is interested in tracing.

• write_to_summary takes arbitrary LATEXcode as a string an writes it to the
summary file. This is used by the PathwayTable and PathwayTabulate.

2.9.2 Example Database

The framework comes with an example database of real-life and non-chemical
examples that is useful when testing the different pathway functions.

The database allows for error checking of all examples, loading of a single ex-
ample and even loading of all examples. 1

A unifying example format has been designed and it will be described here.

An example database contains example folders. The name of this folder be-
comes the tag for the example(s) inside. An example folder must contain a
file example.py which will be included using PyMØD’s include. The example
folder can also contain other helpful files needed to construct the example. The
example.py-file must contain one or more classes that inherit from ExampleBase.
Doing this means that the example database framework can find the subclass
and the subclass can inherit all the needed properties at the same time. The
name of the class that inherits from ExampleBase will be used as the name for
the example if a name is not explicitly defined. When an example folder is
loaded, all ExampleBase subclasses found will be loaded, instantiated and re-
turned as a list to the user.

The following properties must be set:

• start_molecules: Used to specify a list of molecules that are to be consid-
ered start-molecules.

• start_molecule: This can be set instead of start_molecules if the start-
molecules are just one molecule.

• goal_molecules/goal_molecule: Similar story for goal-molecules.

• dg_strat: A function that returns the strategy used to build the DG of the
example.

• dg: If dg_strat is not supplied, one can override the DG creation di-
rectly. By default the dg function will call dg_strat and give the result
to dgRuleComp.

1A word of warning: Due to the way PyMØD works currently, an example is loaded with
side-effects that modifies global variables such as inputGraphs. This means that using these
variables in DG strategies and other places cause weird results if multiple examples are loaded
in the same run.
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The following properties are inherited by default, but can be overridden if
needed:

• name: The name of the specific example class.

By default it is <example folder>::<example class name>

• label: The label used by the various tables in the framework to represent
the example as a pathway. By default it is None which will result in it
simply being assigned a number.

• graph_printer: Returns a mod.GraphPrinter. Override if the molecules
of the example should be printed in a special way.

• dg_printer: Returns a mod.DGPrinter. Override if the DG of the example
should be printed in a special way.

• print_dg: Takes a DG and prints it. By default it will call dg_printer to
get a mod.DGPrinter.

• print_graphs: Prints all graphs of inputGraphs. By default it will call
graph_printer to get a mod.GraphPrinter.

• print_rules: Prints all rules of inputRules. By default it will call graph_printer
to get a mod.GraphPrinter.

When loading an example, it will be sanity checked and warnings might be
printed or errors might be thrown if some required fields are not as they should
be. Loading an example folder is done like this:

include("example_database/common.py")
db = ExampleDatabase("example_database")

exs = db.load_example("example-name")
# exs will be a list of example class instances
# that inherit from ExampleBase.

An example of how to find a simplified Pathway Table for the Glycolysis path-
ways:

from atomtracing import *

include("example_database/common.py")
db = ExampleDatabase("example_database")

exs = db.load_example("glycolysis")

pathways = examples_to_pathways(exs)

t = PathwayTable(pathways, is_not_hydrogen)
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t2 = t.simplify(method="position")

# Prints as ascii in the terminal.
t2.print()

# Prints all pathways as well as table to the summary file.
t2.to_summary(ex.dg_printer())

An example of how to find a simplified Pathway Table for the XY-2-Pathways
example:

An example of how to find a Pathway Comparison Table for the XY-4-Pathways
example:

from atomtracing import *

include("../example_database/common.py")
db = ExampleDatabase("../example_database")

exs = db.load_example("xy-4-pathways")
ex = exs[0]

pathways = example_flow_to_pathways(ex)

t = PathwayTable(pathways, is_not_hydrogen)
t2 = t.simplify(method="position")

t2.print()

for a in t2.columns():
# Find some atom to create the Pathway Comparison Table on
atom = a
break

t3 = t2.pathway_comparison_table(atom)
tab = t3.pretty().to_tabulate()
print(tab)

2.9.3 Exposing Vertex Maps in MØD

To actually be able to access the vertex maps in the Python framework above,
they need to be exposed from MØD via Boost Python.
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The code discussed is from Jakob Lykke Andersen’s MØD repository, branch
peter/develop, commit dedbf77e.

Relevant files:

• src/mod/DGVertexMap.cpp

• src/mod/DGVertexMap.h

• src/mod/VertexMapUnionGraph.cpp

• src/mod/VertexMapUnionGraph.h

• src/mod/Py/VertexMap.cpp

The VertexMap class can be found in src/mod/lib/DG/VertexMap.h This class
corresponds to VertexMaps(e) for some hyperedge e of the DG, i.e. the set of all
vertex maps for that hyperedge. The tail of e is a set of molecules and the union
of these is what has been referred to as G in this chapter. Similarly, the union of
the molecules of the head of e is H.

The VertexMap class resides in the lib part of MØD and is not suitable for direct
exposure via Boost Python. Therefore a wrapper class DGVertexMap is created.
Additionally, the union graphs G and H are not exposed via Python, thus the
class VertexMapUnionGraph is created for this purpose.

The DGVertexMap has a couple of important parts:

• MapProxy: A class that represents a single vertex map. It has two methods
leftToRight and rightToLeft. leftToRight takes a vertex from G to H
via the vertex map. rightToLeft is its inverse.

• const_iterator: An iterator in C++ is a view into a collection. Con-
cretely, it points to one element of the collection and has the ability to
continue to the next one. The lib VertexMap class already has iterator,
so the iterator in DGVertexMap is simply a wrapper around it, using Boost
iterator_adaptor. In brief terms, this class describes how given an it-
erator instance of one type it can be turned into an iterator instance of
another type. In this case it is simply wrapping it in a class MapProxy that
represents a single vertex map.

• range: A class that represents the entire span of iterators. It contains
the begin- and end-iterator. This is needed to be able to use for-loops in
Python, like

for m in maps:
# Do stuff with m

• getProxyLeft (and getProxyRight): This method gives the VertexMapUnionGraph
representation of G (or H) such that its vertices or edges can be traversed
and passed through the vertex map.
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The VertexMapUnionGraph, as mentioned, represents the union of molecule-
graphs to one unified graph of the tail or head of e. It is a graph and thus
needs a graph interface:

• Vertex: A class representing a vertex in the graph.

• vertices: A range of all vertices.

• numVertices: The number of vertices.

• Edge: A class representing a vertex in the graph.

• edges: A range of all edges.

• numEdges: The number of edges.

• and more.

This is mostly just wrappers around the union_graph from src/jla_boost/-
graph/UnionGraph.hpp. Boost iterator_adaptor is again used to convert ex-
isting iterators of union_graph to iterators of VertexMapUnionGraph.

With all this in play, it is possible to create a DGVertexMap, M, from a hyperedge e
and then get a VertexMapUnionGraph, G, by calling M.getProxyLeft(). Now for
each veretx map m in M.maps() and each v in G.vertices(), one can find what
v maps to via the vertex map by calling m.leftToRight(v).

The last step is to expose all these classes and methods to the Python interface
via Boost Python. This is relatively straight forward by specifying for each class
what methods in Python corresponds to some method in C++. An example can
be seen here:

py::class_<DGVertexMap, std::shared_ptr<DGVertexMap>>("DGVertexMap", py::no_init)
.def("getLeft", &DGVertexMap::getProxyLeft)
.def("getRight", &DGVertexMap::getProxyRight)
.def_readonly("maps", &DGVertexMap::maps)
.def("__len__", &DGVertexMap::size)
;
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3
Vertex Map Optimization

3.1 Introduction

A core component of the Hypergraph-Semigroup approach is the computation
of vertex maps based on hyperedges in the Derivation Graph. The DG might
have hundreds of hyperedges and for each, one or more vertex maps has to be
found. This can be very time consuming and the entire approach would see
a great speed-up if the vertex map computation is sped up. Additionally, from
the user’s point of view many of the vertex maps currently produced are redun-
dant because only a subset of atoms are relevant when doing isotope labelling
experiments, for instance only carbons and oxygens. Two vertex maps might
be different only in how they map the hydrogens and further worsening the
runtime of Hypergraph-Semigroup approach. See Figure 3.1.
There is, however, nothing special about hydrogens – it is just a vertex in graph
like any other, however it is often considered irrelevant for isotope labelling
experiments. The approach we will design in this section will be able to ignore
any kind of vertex in any graph.

Both the old and the new approach rely on algorithms to find all monomor-
phisms and isomorphisms between two graphs. The old approach will use
such algorithms as black boxes that given two graphs will return a list of all
monomorphisms or isomorphisms depending on the need. The new approach
will need a black box for monomorphism, but for isomorphisms, it needs some
control over how the space of all possibilities is traversed as well as modifying
some internal state. The algorithm used in MØD for this task is VF2 which can
be modified to give monomorphisms, subgraph isomorphisms or graph iso-
morphisms. However, any (sub)graph isomorphism finding algorithm can be
used if it satisfies these requirements:
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FIGURE 3.1: Isotope labelling experiments often use carbons
meaning that only the following partial vertex maps are desired:
(1 7→ 7; 2 7→ 8) and (1 7→ 8; 2 7→ 7). For a complete vertex map,
we just need one isomorphic mapping of the hydrogens, for in-
stance (3 7→ 9; 4 7→ 10; 5 7→ 11; 6 7→ 12). The old approach will

enumerate them all.

1. Each time the algorithm finds a match, it must report it to the user, in such
a way that the user can specify whether to continue the search or not. This
is commonly achieved by the algorithm taking a callback.

2. The algorithm must have a state of what vertices have already been matched,
likely as a stack, in a way that can be modified before starting the search.

The default VF2 implementation in MØD supports requirement 1, but not 2.
To implement the new approach, it has therefore been necessary to create a
modified version of VF2. This will be described in detail later in this chapter.

Throughout this chapter we will refer to any algorithm that finds all graph
Isomorphisms as AI and any algorithm that finds all Monomorphisms as AM.
Any Customizable (sub)graph isomorphism algorithm that satisfy the require-
ments above will be called AC.

3.2 The Rule Composition Approach

This is how vertex maps are currently computed in MØD.
A DG has previously been created and e = (e+, e−) is the hyperedge for which

VertexMaps(e) will be computed. Furthermore, let p = (L l←− K r−→ R) be the
corresponding rule of the hyperedge, and let G be the disjoint union graph of
the multiset of tail-vertices e+. H is defined similarly from e−.

First, we create identity rules pG = (G ← G → G) and pH = (H ← H → H).
Next, we compute P′ = pG •⊇ p. Recall that the full composition results in a new
rule – or a set of rules in this case, since we want to enumerate all possibilities –
from G to G, but where the subgraph L in G is replaced with R.

For each p′ ∈ P′, we compose it with pH as P′′ = p′ •⊆ pH. This is again a set of
new rules, from G to H. Gather all rules computed in this fashion in a set X.

This means that we have transformed the original rule p from L to R to a set of
rules X from G to H. Mathetically, we are done, but in practice the newly created
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rules are not proper vertex maps from G to H in the desired way, for instance
the ids might not be correct. To correct this, we need to find all isomorphisms
from G to the left-hand side of each rule in X, and similarly all isomorphisms
from the right-hand side of each rule to H. We can now compute the set of
vertex maps from G to H:

VertexMaps(e) = {mGL′ ◦ l′−1 ◦ r′ ◦mR′H | (L′ l′←− K′ r′−→ R′) ∈ X,
mGL′ ∈ MGL′ , mR′H ∈ MR′H}

where MGL′ is the set of isomorphisms from G to L′ and MR′H is the set of
isomorphisms from R′ to H. These sets are computed by two calls to AI .

In Python, the vertex maps on each hyperedge is converted to a semigroup
transformation as discussed in the previous chapter and only atoms of interest
(i.e. atoms that satisfy some predicate specified by the user) will be included in
the transformation. This means that each vertex map needs to be filtered down
in size and checked if it is a duplicate.

3.3 The New Approach

The new approach takes the filtering and moves it to C++ while incorporating
it into a more direct approach for finding vertex maps using (sub)graph isomor-
phism algorithm with requirements mentioned in the introduction.

Suppose we have graphs G and H (each of which might be a union of multiple
molecule-graphs) and a rule p = (L ← K → R). This gives us the following
DPO:

L K R

G D H

l r

MLG MRH

Let MLG be the set of all monomorphisms from L to G. Similarly, MRH from R
to H. One monomorphism from MLG and one from MRH together are called the
match and co-match since they describe how L has been matched in G and R in
H. These sets can be computed using two calls to AM.

The goal of this entire approach is to find VertexMaps(e), the set of vertex maps
from G to H for some hyperedge e, however anAI call will not suffice here since
G and H are not isomorphic (assuming that p is not the identity rule). Giving G
and H to AI would simply yield no mappings since the subgraph induced by
the rule p is changed from G to H. But a key observation is that G \ L and H \ R
are isomorphic. Therefore if we can simply pretend that AI has already found
a match for the vertices of L to vertices of R using l and r, and then continue
searching for an isomorphism from the vertices G \ L to the vertices of H \ R,
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we can find a complete mapping from G to H. This is where AC comes into
play.

Using this idea, the entire procedure to compute VertexMaps(e) is therefore as
follows:

1. Compute MLG and MRH using AM.

2. For each (mLG, mRH) ∈ MLG × MRH, prepare a call to AC with G and H
as input graphs. Before the matching is done, pre-set a partial mapping
based mLG, mRH and the rule p. We call this the fixation.

3. RunAC until it has enumerated all full mappings of G → H. It should not
be allowed to backtrack beyond the fixation. Report these vertex maps
back to the user.

This approach is depicted in Figure 3.2.

Rule Pattern Other Atoms

FIGURE 3.2: The subgraph induced by the rule (blue) is fixated for
the call to AC. The algorithm will then find the mapping for the

other atoms.

Using the above approach, VertexMaps(e) will include all possible vertex maps
that the old method did – including all the redundant wrt. hydrogens – but
since we take a much more direct approach with only 2 calls to AM and 1 call
to AC, it is more flexible and perhaps even faster.

One nice thing is the ability to get rid of these redundancies using the following
idea:

1. Compute MLG and MRH using AM.

2. First construct a subgraph of G and H where hydrogens are removed (or
some other predicate is satisfied). Call these G′ and H′.
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3. Phase 1: For each (mLG, mRH) ∈ MLG ×MRH, prepare a call toAC with G′

and H′ as input graphs and mLG and mRH fixate a partial mapping. Run
the matching.

4. Phase 2: For each mapping m that is found in step 3, create a new AC call
with G to H as input graphs, where the entirety of m is fixated, meaning
that we have a partial mapping from G to H of all non-hydrogens. Run
AC until some match is found, report it and do not look for other matches.
Continue the search of the AC call from step 3.

This approach is depicted in Figure 3.3.

Rule Pattern Non-hydrogens Hydrogens

FIGURE 3.3: The subgraph induced by the rule (blue) is fixated
for the first call to AC. The first AC call will find a mapping of
the non-hydrogens (green) and start a second call toAC where the
rule subgraph (blue) and non-hydrogens (green) are fixated and
only the hydrogens (red) needs to be mapped. If there are multiple
possible mappings for non-hydrogens (green), all of them will be
found. For each, only one mapping of the hydrogens (red) will be

found.

Note: If some hydrogen is part of the subgraph induced by the rule, it needs
to be fixated and must remain in G′ and H′. If such a hydrogen is ignored, no
matches can be found in step 3 because the neighborhood relationships change
for that atom.

In total, 2 AM calls and 2 AC calls are needed for each vertex map reported to
the user. Furthermore, this approach has a couple of strengths:

• It is easy to customize and generalize compared to the approach with rule
composition.

• It is a direct approach and as such is easier to understand and likely also
faster.
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• If the pattern L of the rule is large relative to G, this approach is even faster.
Suppose that L is the entirety of G or close to the entirety of G, then most
of the vertices of G are fixated and only a few needs to be matched by the
AC call in step 3. Afterwards only one set of hydrogen-matches needs to
be found with the AC call in step 4.

• The old approach does not support stereo-chemistry and other advanced
features of MØD. Neither does the new approach, but since it is a more
direct approach, it will be much easier to support such features.

• Sometimes it is also useful to get the match and co-match in addition to
each vertex map. This is non-trivial to retrieve using the old approach,
but quite trivial with the new approach since the match and co-match are
computed directly.

One problem with this approach is that hydrogens in the subgraph induced by
the rule cannot be ignored in the first phase. Consider Figure 3.4. The Keto-Enol
can match either hydrogen 19 or hydrogen 16, thus this will contribute in MLG
with two mappings instead of one, and for each of them a vertex map is found;
one of which is redundant. This could potentially be fixed by using the two-
stage AC approach on each of L→ G and R→ H instead of G → H. However,
due to time constraints this is still an open problem. Regardless, it is a minor
issue compared to how much faster the new approach is overall, as we will see
in the next section.

FIGURE 3.4



Chapter 3. Vertex Map Optimization 58

3.4 Empirical Results

The overall goal of the vertex map optimization has been to improve the run-
time of finding all vertex maps of a hyperedge in a DG as well as cut down on
the number of redundant vertex maps due to hydrogen symmetries; all with the
purpose of reducing the total time it takes to compute a Hypergraph-Semigroup.

In the following a couple of chemical and non-chemical examples and experi-
ments will be presented and discussed.

3.4.1 Improvement in classical chemical examples

Many of the bigger examples that one would come across when first learning
about MØD, for instance Formose and Pentose Phosphate Pathway (PPP), as
well as other known pathways like Glycolysis (ED and EMP pathways) has
been tested.

All the tests presented in this section have been carried out in the same way:

1. Compute the DG for the example.

2. Compute the Hypergraph-Semigroup using the old method. Specifically:
For each hyperedge, find all vertex maps using the old approach. Remove
redundant vertex maps when ignoring hydrogens.

3. Compute the Hypergraph-Semigroup using the new method. Specifically:
For each hyperedge, find all vertex maps using the new approach.

4. 2 and 3 are repeated 5 times and the average total time taken to compute
the Hypergraph-Semigroup is stored. The number of vertex maps found
for each hyperedge is also stored for 2 and 3.

Note: All of this is done in Python with calls to the C++ backend of MØD. The
idea behind the testing procedure is how the user would experience the speed-
up.

First, we will consider the Formose example with molecules of at most 5 carbons
depicted in Figure 3.5. The image is too small to see details, but the important
thing is this: There are 46 hyperedges and many of the molecules have quite a
few symmetries and places where hydrogens create redundant vertex maps.
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FIGURE 3.5: Formose DG with 46 hyperedges and many symme-
tries.

When creating the Hypergraph-Semigroup with the old approach it took roughly
0.69 seconds and with the new approach it only took 0.19 seconds, so in this
case we have an approximate speed-up of 3.5 times. If we look at the num-
ber of vertex maps created on each hyperedge, we see a pretty clear picture of
the improvement: The amount of vertex maps is greatly reduced for each hy-
peredge meaning that additional processing of the vertex maps into semigroup
transformations is reduced.

This is depicted in Figure 3.6 as a side-by-side histogram where the bins are the
number of vertex maps created per hyperedge. Each bin has two bars, one for
the old and one for the new approach. The height of each bar is determined
by the number of hyperedges in the DG that yield the number of vertex maps
corresponding to the bin. For instance, in the case of Figure 3.6, roughly 22
hyperedges gave 4 vertex maps each with the old approach, but only around 10
gave 4 vertex maps with the new approach. If there is no bar, no hyperedges
resulted in that number of vertex maps.
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FIGURE 3.6: Formose: A side-by-side histogram of the number of
vertex maps per hyperedge. Higher bars to the left is better.

Another example is Glycolysis, specifically the EMP pathway (the ED pathway
showed similar results). Here we have 19 hyperedges. The old approach took
around 0.10 seconds while the new approach took around 0.05 seconds to com-
pute the entire Hypergraph-Semigroup. Here the speed-up is 2-fold, showing
that the speed-up can heavily depend on the concrete example. In the case of
the ED and EMP pathways there are no symmetric molecules and the effect of
hydrogens is much smaller which also becomes apparent from the large bars
of 2 and 4 in Figure 3.7 of the old method. If we consider the old and the new
approach side-by-side, it is still an improvement, but not a considerable one.
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FIGURE 3.7: Glycolysis, EMP: A side-by-side histogram of the
number of vertex maps per hyperedge. Higher bars to the left is

better.

Finally, we can look at PPP. It has two variants: Normal and strict. The distinc-
tion comes in how the DG is computed. The strategy for the normal DG follows
a very generative chemistry approach: Based on some known chemical rules,
what can be created? This is usually a superset that contains much more than
what is usually sought after. The strict strategy, on the other hand, applies only
the specific rules in a specific order such that exactly the desired pathway(s) are
created. To illustrate this further, see Figure 3.8. The normal has 333 hyperedges
while the strict has 24.
The timing results can be seen in the table below:

Normal [s] Strict [s]
Old 135.34 30.14
New 8.08 1.01

Here we see a 16-fold speed-up in the normal DG and a speed-up of 30 times
for the strict DG. Both of these DGs contains a lot of molecules with a lot of
hydrogens and being able to not having to enumerate them all greatly speeds
up the process. Consider Figures 3.9 and 3.10. Here it becomes very apparent
how much of an improvement it is, especially for the normal DG, where the
majority of edges would previously produce vertex maps in the triple-digits
and now it is in the single- and double-digits.
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FIGURE 3.8: The PPP normal DG (left) compared to the PPP strict
DG (right). The normal has 333 hyperedges while the strict has 24.

FIGURE 3.9: PPP, normal: A side-by-side histogram of the number
of vertex maps per hyperedge. Higher bars to the left is better.
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FIGURE 3.10: PPP, strict: A side-by-side histogram of the number
of vertex maps per hyperedge. Higher bars to the left is better.

3.4.2 Linear molecules of growing size

Linear molecules, in this context, will refer to the molecules with SMILES strings
on the form

C· · ·C︸ ︷︷ ︸
N

Such a general linear molecule is depicted in its flesh-out form in figure 3.11
below.

FIGURE 3.11

The advantage of testing with these types of molecules is that one can test for in-
creasing N and that all linear molecules have an excessive amount of hydrogens
that cause redundant vertex maps.

To test the two approaches, we will devise four different pattern families of the
type

C− C− · · · − C︸ ︷︷ ︸
k

→ C = C = · · · = C︸ ︷︷ ︸
k
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Note: This is non-chemical since it introduces bonds while still maintaining
the same number of hydrogen-neighbors for each carbons. However this is
sufficient to gain insight into the strengths and weaknesses of the old and the
new methods.
The four patterns are

• SMALL: A constant-sized pattern where k = 2.

• MEDIUM: A pattern where k = bN/2c.

• LARGE: A pattern where k = N− 1. It is constant in the size of what is not
matched by the pattern.

• FULL: A pattern where k = N that covers the entire linear molecule.

The test is carried out as follows:

• For N ∈ {2, . . . , 5} and for each of the four patterns:

• Compute the Hypergraph-Semigroup using the old approach. Repeat 5
times. Store the average time.

• For N ∈ {2, . . . , 100} and for each of the four patterns:

• Compute the Hypergraph-Semigroup using the new approach. Repeat 5
times. Store the average time.

(We stop the old approach at N = 5 due to the incredibly slow running time.)

The hypothesis is this:
The old approach produces many more vertex maps than needed in these sit-
uations. It will suffer in all different pattern sizes, more for larger patterns like
LARGE and FULL because there are even more symmetries with the hydrogens.
One could expect the new approach to be much faster in general because the
possibilities of the hydrogens will be collapsed down to one and the only thing
giving the complexity is finding all possible places for the pattern. Therefore
one could expect the SMALL pattern is the most demanding for the new ap-
proach since there are more possibilities to try out for the monomorphism algo-
rithm.

The next couple of pages will include figures for results of tests conducted on
the SMALL, MEDIUM, LARGE and FULL patterns. Each will have a combined
plot with old and new method together as well as them separately to better see
the grow of each approach individually.

One thing that is apparent right away is the fact that in this family of molecules
the old approach is painfully slow – even for very small molecules of size N = 4
or N = 5 where it takes tens of seconds.
If one looks at the figures 3.12–3.15, the hypotheses above seems to match up
very well with reality. The old method does indeed suffer a tremendous amount
more than the new approach across the board. If one were to choose a pattern
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family that is better than the rest, it would be the LARGE patterns since the
running time for N = 5 is halved compared to the other pattern families. The
reason for this is however not clear. As predicted, the best cases for the new
approach is for bigger patterns like LARGE and FULL.
For N = 5 (the biggest N tested in the old approach), the speed-up is quite
substantial as one can see from the table below.

Pattern Speed-up factor
SMALL 18439
MEDIUM 18062
LARGE 18690
FULL 39417

3.4.3 Direct Comparison

It is pretty fair to conclude that the new approach hugely improves runtime
across a wide range of examples. It might therefore be interesting to compare
the two approaches more directly since there is a lot of overhead calling back
and forth between C++ and Python. To make a level playing field for the two
implementations the hydrogen-filtering is removed in the new approach. Con-
cretely, this is done by modifying the predicate determining whether something
is a non-hydrogen to always return true. With this setting, the sets of vertex
maps computed by the two approaches are identical. Furthermore, the tim-
ing is done in C++ in contrast to Python and the timer only includes when a
new VertexMaps(e) is computed; not counting the iteration over all e or what
happens with the vertex map set after it is computed. This serves as a fair com-
parison since the implementations now solve the exact same problem and are
timed equally.

See Figure 3.16 for a couple of examples. The x-axis corresponds to each edge e
in the DG (in no particular order) and the y-axis is the time it took to compute
VertexMaps(e) for that edge. For each edge the computation of VertexMaps(e)
is repeated 20 times to even out running time. The line is the average and error
bars show the lowest and highest timings among the 20 samples.

In general, it can be concluded that the new approach is only marginally faster
when it comes to a direct comparison, and sometimes it even runs slower than
the old approach. For instance in the case of PPP-Strict there is a strange spike
for some edges. Investigating the edges in question does not show any inter-
esting differences between the graphs involved in the pattern matching. The
pattern size for the edges in the spike does seem smaller than the rest, but not
significantly. Another cause of slowdown might be due to lack of optimization
when writing the new approach in C++.

Overall, the difference in timing of the direct comparison is very insignificant
compared to the fact that the new approach is much more flexible and allows for
many customizations such as ignoring hydrogens which we have seen makes a
huge difference.
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FIGURE 3.12



Chapter 3. Vertex Map Optimization 67

FIGURE 3.13
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FIGURE 3.14
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FIGURE 3.15
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FIGURE 3.16: Examples of old and new approach timed directly
against each other. The x-axis corresponds to each edge e in the
DG (in no particular order) and the y-axis is the time it took to

compute VertexMaps(e) for that edge.
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3.5 Code Overview

The code discussed is from Jakob Lykke Andersen’s MØD repository, branch
peter/develop, commit dedbf77e.

3 files are important for changes to the vertex map approach:

• src/mod/lib/DG/VertexMap.cpp

• src/mod/lib/DG/VertexMap.h

• src/jla_boost/graph/morphism/vf2_class.hpp

VF2 is the algorithm of choice to compute (sub)graph ismorphisms between
graphs in MØD. The implementation works on any graph-like structure with
vertices and edges. In our case, we will use it on union_graphs representing G
and H. A union_graph represents a union of multiple connected graphs into
a bigger graphs with disjoint connected components. This structure is used
because it is desirable to store each molecule as its own graph structure, and
then when multiple molecules are needed in the same graph a union_graph is
used.

In MØD, VF2 is implemented in src/jla_boost/graph/morphism/vf2.hpp. This
file includes structs for the internal state of VF2 as well as functions that given
graphs like G and H as well as a callback (to store the produced vertex maps, as
described in the Preliminaries-chapter) will create an internal state, do a depth-
first search tree traversal and modify the state as the search progresses. The
state is however not accessible outside the functions hindering the fixation of a
predetermined partial map.

Therefore a VF2 wrapper class has been created in vf2_class.hpp. The class has
a public method force_push that takes a pair (g, h) of vertices (one from G and
one from H) and modifies the internal state by adding the mapping g 7→ h.
There is also a try_push method that takes a (g, h)-pair, but before modifying
the state, it checks if the mapping is actually feasible in accordance to the feasi-
bility rules of VF2 (not discussed here). Finally, the class has the method match
that carries out the depth-first search tree traversal. The search tree traversal is
implemented as a recursive backtracking algorithm in contrast to the original
match-function from vf2.hpp that is iterative with gotos. In the VF2 paper a
"Candidate Pair Set" is mentioned when trying different potential (g, h)-pairs.
This is made more explicit in the recursive implementation by using iterator
class CandPairSet_iterator instead of raw calls to state.feasible_candidate1
and state.feasible_candidate2.

A snippet from the match-function is shown below.

const auto cands = cand_pair_set();
for (auto cand : asRange(cands)) {

boost::tie(v_dom, v_codom) = cand;

bool was_pushed = try_push(v_dom, v_codom);
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if (!was_pushed) {
continue; // Not valid push, try another

}

if(state.valid()) {
// Recurse if valid
bool continue_search = match(depth + 1);
if (!continue_search) {

return false;
}
// Then proceed to backtrack

}

pop(); // Backtrack
} // end for

vf2_class.hpp also includes the important vf2_custom_match-function which
is the entrypoint for the two-stage VF2 approach. Here the subgraphs G′ and
H′ are created, a VF2 class is initialized, fixations are made and the match is
started. The subgraphs are created using Boost filtered graphs.

The class CallbackPartial represents second stage VF2 call that fixates every
non-hydrogen based on the vertex map that the callback received.
The class CallbackInner hands the final vertex map to the user using the call-
back that the user originally specified. If the user callback asks for more maps,
this will be passed back to CallbackPartial.

The last thing worth mentioning from vf2_class.hpp is VF2Settings which is
a class that gathers all the parameters of needed to create a VF2 instance. This is
handy when having to pass all these parameters through various function calls
and creating two different VF2 class with similar settings.

Snippets below shows the majority of vf2_custom_match. G′ is called filt_dom
and H′ is called filt_codom. For a technical reason, a FilteredWrapper is
wrapped around filt_dom and filt_codom.

// Put the input graphs in wrapped filtered graphs
const auto filt_dom = boost::make_filtered_graph(

graph_dom,
settings.edge_incl_dom_pred,
settings.vertex_incl_dom_pred

);

const auto filt_codom = boost::make_filtered_graph(
graph_codom,
settings.edge_incl_codom_pred,
settings.vertex_incl_codom_pred

);
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const auto wrapped_dom = jla_boost::makeFilteredWrapper(filt_dom);
const auto wrapped_codom = jla_boost::makeFilteredWrapper(filt_codom);

const auto callback_partial = detail::make_callback_partial(
graph_dom, graph_codom,
user_callback, settings

);

const auto wrapped_settings = make_vf2_settings(wrapped_dom, wrapped_codom,
settings.edge_cmp_pred,
settings.vertex_cmp_pred,

settings.edge_incl_dom_pred,
settings.vertex_incl_dom_pred,

settings.edge_incl_codom_pred,
settings.vertex_incl_codom_pred

);

auto vf2 = make_VF2<vf2_problem_selector::isomorphism>(
wrapped_dom,
wrapped_codom,
callback_partial,
wrapped_settings

);

for (auto p : fixations) {
vf2.force_push(p.first, p.second);

}

vf2.match();

VertexMap.cpp previously contained the old vertex map approach with rule
composition. This has now been replaced with the new VF2 approach as out-
lined above. The approach with a few technical details is roughly as follows

• Let e = (e+, e−) be the hyperedge for which the vertex maps will be com-
puted. e+ is the tail of the edge e and is a set of vertices corresponding to
molecules. Similar for e− which is the head.

• Turn e+ into G (a union_graph of molecule-vertices) and e− into H.

• Irrelevant for the theory, but important for the implementation is the cre-
ation of LabelledUnionGraphs based on G and H. These wrappers con-
tain atom and bond information for each vertex and edge in the under-
lying union_graph. The union_graph in itself is just the topology of the
molecules.
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• For each rule r = (L← K → R):

(Conceptually, we think of one hyperedge of the DG as one rule applica-
tion, but in theory there could be multiple)

– Retrieve graphs L and R.

– Retrieve corresponding labelled graphs of L and R.

– Compute MLG : L → G and MRH : R → H using normal monomor-
phism VF2 calls. These sets are called left_maps and right_maps in
the code.

– For each (m, m′) ∈ MLG ×MRH:

* Create an empty list of fixations.

* For each vertex in K, determine the corresponding vertex in L (R)
via identity function and then in G (H) via m (m′). This is added
to the list of fixations.

* Create predicates for filtered graphs of G and H that excludes
hydrogens as well as predicates that test the equality of vertices
and edges based on atom types and bond types. Also create
VF2Settings.

* Call vf2_custom_match with all the parameters computed above.

VertexMap.h contains the VertexMap class as well as the default predicates to
exclude hydrogens. In the code this vertex-predicate looks like this:

struct VertexPredicate {
...
bool operator()(Vertex v) const {

// If the atom was fixed in a mapping,
// we should still include it in the filtered graph.
if (fixed->find(v) != fixed->end()) {

return true;
}

const auto& g = get_graph(*lg);
const auto& atom_data = get_molecule(*lg)[v];

// Ignore everything that is hydrogens of degree 1.
return !(atom_data.getAtomId() == AtomIds::H && out_degree(v, g) == 1);

};
...

};
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4
Conclusion & Future Work

4.1 Concluding Remarks

In this thesis an approach for assisting in the design of isotope labelling exper-
iments has been presented. It is called the Hypergraph-Semigroup approach
and it uses semigroup theory, in particular orbit computations, to create a Path-
way Table that gives an overview of where different potential labelling might
end up, starting from some start-molecules to some goal-molecules. It can be
used to gain insight into what atoms in the start-molecules should be labelled
to better understand some chemical network or to distinguish different path-
ways. A Pathway Comparison Table can also be created which compares only
two pathways using inverted orbits to gain even more insight.

One outcome of the thesis has been a Python framework that allows for all
the theory presented to be automated based on a model in MØD. It supports
importing examples from an example database and creating pathways where
orbits can be computed. Additionally, it allows for the automatic creation of
Pathway Tables and Pathway Comparison tables.

Another contribution has been optimizing how vertex maps are computed. Ver-
tex maps play a huge role in the Hypergraph-Semigroup approach since it needs
to be computed for each hyperedge in a derivation graph. Currently in MØD,
the approach has been to use rule composition. A new approach has been pre-
sented which uses a two-stage process to ignore unwanted atoms such as hy-
drogens to reduce the combinatorial explosion, then later add them back. It has
been shown how drastically faster this is for chemical examples with a lot of hy-
drogens. Additionally, it is a more direct approach which makes it more flexible
in terms of making other customizations to the algorithm.

The rest of this chapter presents a brief overview of some of the possible other
topics that one could delve into if one wanted to pick up where this thesis left.
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4.2 Building on this Thesis

The theory and Python framework presented in chapter 2 is very helpful when
designing isotope labelling experiment, but it is not fully automatic yet. The
user still needs to look at the Pathway Table and decide how to proceed based
on the content. The first next steps would therefore be to develop an algorithm
that based on a Pathway Table or one or more Pathway Comparison Tables
can construct a plan for what isotope labellings to try; preferably with as few
different labellings that need to be tried as possible, to save time and money.

Concretely, there are some changes to the Python framework that would be
useful:

• Union of pathways: Being able to union two hypergraphs together could
be helpful for certain metabolic networks where it is perhaps known that
pathways are active in pairs.

• Create a proper class for the Pathway Comparison Table to easier work
with it.

• Find a way to automatically create visualizations of orbits and atom traces
superimposed on top of the DG, similar to the TCA illustration in Fig-
ure 2.5 from Chapter 2.

• Support splitting up long Pathway Tables into smaller tables to save hori-
zontal space.

• Currently it is possible to consider pairs of labels for the PathwayTable,
but it is not as easy as simply specifying for instance is_not_hydrogen as
the mark_candidates parameter to automatically get all singleton-atoms
that are not hydrogens. Having an easy way to specify pairs of atoms
would be nice.

Another direction would be to delve into other group and semigroup theory
and apply that to the Hypergraph-Semigroup to gain new insight.

4.3 Petri-Nets

The use of Petri-nets in MØD is part of a 3-step analysis that can be carried out:

1. Create a DG of the chemical network.

2. Find a flow solution using integer-linear programming. This describes
how to balance input and output in such a way that some number of start-
molecules can eventually become some number of goal-molecules.

3. Convert the flow solution into a "recipe" of what reactions to apply in
what order to go from the start-molecules to the goal-molecules. It gives
a temporal understanding of the pathway.
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The last step is done via Petri-net theory. The entire field of Petri-net will not be
repeated here, but the essence is given here (based on [18]):
A Petri-net is a hypergraph of places (vertices) and transitions (hyperedges).
Some places will initially hold some tokens. Transitions can fire to move tokens
from one place to another. See Figure 4.1. t2 can fire which takes one token from
p1 and puts it in p3. Then t2 can no longer fire since there are no tokens left in p1.
We can represent the entire state of the Petri-net by a marking which is a tuple
with each entry corresponding to the number of tokens in a given place. The

corresponding marking for the Petri-net in Figure 4.1 would be (
p1
1 ,

p2
0 ,

p3
0 ,

p4
0 ).

Example 2

Consider the following P/T-net. We will now compute a coverability graph for it.

t4

p4

p1

t1

p2 t3

p3t2

62

FIGURE 4.1: A example of a Petri-net.

Many interesting questions about Petri-nets are generally really hard, ranging
from undecidable to PSPACE-complete and NP-complete. [13]

For step 3 above, a Petri-net is created based on the DG. The initial marking
is based on the previously created flow solution, namely the amount of input
molecules needed. It is asked if some desired marking is possible to obtain,
namely a marking based on the amount of output molecules needed in the flow
solution. Essentially, it is a reachability question where the answer is a concrete
sequence of transitions that needs to fire to achieve the marking. If Figure 4.1
was a Petri-net created based on a DG, where a flow solution says that one p1 is

needed to create one p4, then we can ask if it is possible to go from (
p1
1 ,

p2
0 ,

p3
0 ,

p4
0 )

to (
p1
0 ,

p2
0 ,

p3
0 ,

p4
1 ).

The solution to such a reachability question induces a hypergraph similar to
the DG, but where the same molecule can occur multiple times as a vertex in
the hypergraph and where each vertex has at most one in-edge and out-edge.
Vertices with no in-edges are input-molecules and vertices with no out-edges
are output-molecules. An example of such a hypergraph can be seen in Ap-
pendix A, Figure A.6.

Since it is very similar to a DG, it is possible to directly use the entire Hypergraph-
Semigroup approach developed in this thesis on such a Petri-net induced hyper-
graph. This could lead to direct atom traces where an atom has a unique path
through the hypergraph – except for symmetries of molecules – and would give
a very good idea of what is going on in the different pathways.

There are however still a lot of challenges:
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• Although the Petri-net hypergraph is printable in MØD, it is not easily
accessible with a coherent hypergraph interface, so this would have to be
implemented in MØD.

• Even with a hypergraph interface for the Petri-net, the tracing would still
have to be implemented either in C++ or the entire Petri-net hypergraph
would have to be exposed to the Python interface, similarly to how the
DG is exposed to Python, to use the Python framework developed in this
thesis.

• The Petri-net hypergraph might only be one of many since there can be
many ways to reach the desired marking. Therefore to get all possible
atom traces one should enumerate all possible Petri-net reachability so-
lutions. MØD simply uses an external tool to find it. This tool does not
support enumerating all of them, thus a Petri-net framework would need
to be created from scratch in MØD to be able to enumerate all solutions.
in such a way that it is possible to distinguish different pathways.

There are a lot of interesting theoretical results that can perhaps also prove use-
ful when working with Petri-nets, especially if one has to implement a Petri-net
solving framework, for instance the notion of stubborn sets used for state space
reduction. [23]

4.4 Constraint-based Membership Testing

In this thesis the primary use of (semi)group theory has been orbits, in particu-
lar using orbit calculations to determine where labels could end up and based
on that inferred what pathways could have caused that. There are however
other aspects of (semi)group theory that could prove useful.

As mentioned in the Preliminary chapter, there exists an algorithm called the
Schreier-Sims algorithm that preprocesses a group in polynomial time to be
able to answer membership testing efficiently. Membership testing means an-
swering the question "Is the element x in the group G?" However, we work
with semigroups so one would first have to investigate possible variants of the
Schreier-Sims algorithm for semigroups. Alternatively, it could be assumed for
simplicity that all reactions are reversible and use the normal Schreier-Sims al-
gorithm for groups.

Regardless, suppose that it is possible to determine if a given transformation or
permutation is in the (semi)group or not. For instance, suppose molecule A has
some atom x. It might be interesting to know if x could end up in atom y of
molecule B. In other words, one would like to ask the question:

[. . . ,
x
y, . . . ]

?
∈ G

Not only would the Schreier-Sims algorithm give us an answer, it would also be
possible to reconstruct the individual transformations that composed together
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gives the above transformation. This would give a very clear picture of how
isotope labels would move around in the chemical system.

There is however a problem: Even though we don’t care about the other po-
sitions than position x, we need to specify the transformation fully. There is
no direct way to specify wildcards in a transformation. There are constraints on
what transformations would be valid, namely if we want y to be a fixed value, it
poses constraints on the hyperedges leading to molecule B etc. Based on the DG
and vertex maps, it is possible to infer such constraints and enumerate feasible
values for the wildcards.

A constraint-programming library such as Gecode [20] can then be used to enu-
merate all valid transformations with y at position x and use the Schreier-Sims
algorithm to determine if any of them are in the group.

It is unknown if this would give any new insights or if the approach would
yield too many valid transformations or be infeasible due to other combina-
torics. Regardless, it could probably be used to investigate different atom traces
for different pathways and perhaps be used to distinguish them.

4.5 Simulation over Time

The Hypergraph-Semigroup approach presented in this thesis does not give any
insight in the passing of time. It is merely a static image of what could happen.

An entirely different approach to atom tracing and isotope labelling would be
to do a stochastic simulation of kinetics. For instance, one could run a Gillespie
simulation by having x copies of start-molecules with a certain labelling, then
randomly apply reactions to existing molecules and keep track of where the
labels are. This can be repeated indefinitely and after an adequate amount of
time, one would expect it to reach an equilibrium. Looking at all goal-molecules
can then give a distribution of where the labels would end up. To do this kind
of simulation properly, the rate at which the reactions happens must be taken
into account, according to the law of mass action.

A related approach is the creation of ordinary differential equations (ODEs).
Usually this is done on a molecular level. Suppose for instance that we have
molecules A, B, C and D and reaction between them as

aA + bB
k1−−⇀↽−−
k−1

cC + dD

where a, b, c and d are multiplicities of the molecules. The rate at which the
reaction happens forward is given by

k1[A]a[B]b

where k1 is some reaction constant and [X] is the concentration of molecule X.
The rate at which the reaction happens backwards is given by

k−1[C]c[D]d
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This can be translated into a system of differential equations

d[A]

dt
= −k1[A]a[B]b + k−1[C]c[D]d

d[B]
dt

= −k1[A]a[B]b + k−1[C]c[D]d

d[C]
dt

= k1[A]a[B]b − k−1[C]c[D]d

d[D]

dt
= k1[A]a[B]b − k−1[C]c[D]d

This can be done for all reactions in a chemical system and then the ODEs can
be solved numerically to get a distribution over time of the different molecules.

To be useful for atom tracing and isotope labelling, the ODEs need to be on an
atomic level, not molecular level, meaning that each atom would get an ODE. The
construction is very similar to the above and can automatically be inferred using
the vertex maps. When done on an atomic level it will result in a tremendous
amount of ODEs. Solving such a system is likely not feasible. Luckily, there
exists tools such as ERODE [9] that reduces the ODE system.



81

A
Appendix: Large Hypergraphs
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FIGURE A.1: XY-4-Pathways – Pathway 1
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FIGURE A.2: XY-4-Pathways – Pathway 2
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FIGURE A.3: XY-4-Pathways – Pathway 3
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FIGURE A.4: XY-4-Pathways – Pathway 4
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FIGURE A.6: A Petri-net solution for PPP, read top to bottom. Con-
verts six Ribulose-5-Phosphate into five Fructose-6-Phosphate.
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B
Appendix: Software Package

The software package that has been handed in can also be found here:

http://cheminf.imada.sdu.dk/isotope

It contains a PDF-version of this thesis as well as three folders:

atomtracing
The Python framework developed in Chapter 2.

example_database
The example database also explained in Chapter 2.

vf2_test
Some Bash- and Python-scripts used to gather and analyze data about the
performance of the old and new vertex map approach.

As mentioned in Chapter 2 and Chapter 3, the changes to MØD can be found
on Jakob Lykke Andersen’s MØD repository, branch peter/develop, commit
dedbf77e.

http://cheminf.imada.sdu.dk/isotope
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